Магнитное поле на оси кругового проводника с током. Магнитное поле в центре кругового проводника с током

Вначале решим более общую задачу нахождения магнитной индукции на оси витка с током. Для этого сделаем рисунок 3.8, на котором изобразим элемент тока и вектор магнитной индукции , который он создает на оси кругового контура в некоторой точке .

Рис. 3.8 Определение магнитной индукции

на оси кругового витка с током

Вектор магнитной индукции , создаваемый бесконечно малым элементом контура может быть определен с помощью закона Био-Савара-Лапласа (3.10).

Как следует из правил векторного произведения, магнитная индукция будет перпендикулярна плоскости, в которой лежат вектора и , поэтому модуль вектора будет равен

.

Для нахождения полной магнитной индукции от всего контура необходимо векторно сложить от всех элементов контура, т. е. фактически сосчитать интеграл по длине кольца

Данный интеграл можно упростить, если представить в виде суммы двух составляющих и

При этом в силу симметрии , поэтому результирующий вектор магнитной индукции будет лежать на оси . Следовательно, для нахождения модуля вектора нужно сложить проекции всех векторов , каждая из которых равна

.

Учитывая, что и , получим для интеграла следующее выражение

Нетрудно заметить, что вычисление получившегося интеграла даст длину контура, т. е. . В итоге суммарная магнитная индукция, создаваемая круговым контуром на оси в точке , равна

. (3.19)

Используя магнитный момент контура, формулу (3.19) можно переписать следующим образом

.

Теперь отметим, что полученное в общем виде решение (3.19) позволяет проанализировать предельный случай, когда точка помещена в центре витка. В этом случае и решение для магнитной индукции поля в центре кольца с током примет вид

Результирующий вектор магнитной индукции (3.19) направлен вдоль оси тока, а его направление связано с направлением тока правилом правого винта (рис. 3.9).

Рис. 3.9 Определение магнитной индукции

в центре кругового витка с током

Индукция магнитного поля в центре дуги окружности

Данная задача может быть решена как частный случай рассмотренной в предыдущем пункте задачи. В этом случае интеграл в формуле (3.18) следует брать не по всей длине окружности, а только по ее дуге l . А также учесть то, что индукция ищется в центре дуги, поэтому . В результате получим

, (3.21)

где – длина дуги; – радиус дуги.

5 Вектор индукции магнитного поля движущегося в вакууме точечного заряда (без вывода формулы)

,

где – электрический заряд; – постоянная нерелятивистская скорость; – радиус-вектор, проведенный от заряда к точке наблюдения.

Силы Ампера и Лоренца

Опыты по отклонению рамки с током в магнитном поле показывают, что на всякий проводник с током, помещенный в магнитное поле, действует механическая сила, называемая силой Ампера .

Закон Ампера определяет силу, действующую на проводник с током, помещенный в магнитное поле:

; , (3.22)

где – сила тока; – элемент длины провода (вектор совпадает по направлению с током ); – длина проводника. Сила Ампера перпендикулярна направлению тока и направлению вектора магнитной индукции.

Если прямолинейный проводник длиной находится в однородном поле, то модуль силы Ампера определяется выражением (рис. 3.10):

Сила Ампера всегда направлена перпендикулярно плоскости, содержащей векторы и , а ее направление как результат векторного произведения определяется правилом правого винта: если смотреть вдоль вектора , то поворот от к по кратчайшему пути должен происходить по часовой стрелке.

Рис. 3.10 Правило левой руки и правило буравчика для силы Ампера

С другой стороны, для определения направления силы Ампера можно также применить мнемоническоеправило левой руки (рис. 3.10): нужно поместить ладонь так, чтобы силовые линии магнитной индукции входили в нее, вытянутые пальцы показывали направление тока, тогда отогнутый большой палец укажет направление силы Ампера.

Исходя из формулы (3.22), найдем выражение для силы взаимодействия двух бесконечно длинных, прямых, параллельных друг другу проводников, по которым текут токи I 1 и I 2 (рис. 3.11) (опыт Ампера). Расстояние между проводами равно a.

Определим силу Ампера dF 21 , действующую со стороны магнитного поля первого тока I 1 на элемент l 2 dl второго тока.

Величина магнитной индукции этого поля B 1 в точке расположения элемента второго проводника с током равна

Рис. 3.11 Опыт Ампера по определению силы взаимодействия

двух прямолинейных токов

Тогда с учетом (3.22) получим

. (3.24)

Рассуждая точно так же, можно показать, что сила Ампера, действующая со стороны магнитного поля, создаваемого вторым проводником с током, на элемент первого проводника I 1 dl , равна

,

т. e. dF 12 = dF 21 . Таким образом, мы вывели формулу (3.1), которая была получена Ампером экспериментальным путем.

На рис. 3.11 показано направление сил Ампера. В случае, когда токи направлены в одну и ту же сторону, то это ‑ силы притяжения, а в случае токов разного направления ‑ силы отталкивания.

Из формулы (3.24), можно получить силу Ампера, действующую на единицу длины проводника

. (3.25)

Таким образом, сила взаимодействия двух параллельных прямых проводников с токами прямо пропорциональна произведению величин токов и обратно пропорциональна расстоянию между ними .

Закон Ампера утверждает, что на элемент с током, помещенный в магнитное поле, действует сила. Но всякий ток есть перемещение заряженных частиц. Естественно предположить, что силы, действующие на проводник с током в магнитном поле, обусловлены силами, действующими на отдельные движущиеся заряды. Этот вывод подтверждается рядом опытов (например, электронный пучок в магнитном поле отклоняется).

Найдем выражение для силы, действующей на заряд, движущийся в магнитном поле, исходя из закона Ампера. Для этого в формулу, определяющую элементарную силу Ампера

подставим выражение для силы электрического тока

,

где I – сила тока, протекающего через проводник; Q – величина полного заряда протекшего за время t ; q – величина заряда одной частицы; N – общее число заряженных частиц, прошедших через проводник объемом V , длиной l и сечением S; n – число частиц в единице объема (концентрация); v – скорость частицы.

В результате получим:

. (3.26)

Направление вектора совпадаёт с направлением скорости v , поэтому их можно поменять местами.

. (3.27)

Эта сила действует на все движущиеся заряды в проводнике длиной и сечением S , число таких зарядов:

Следовательно, сила, действующая на один заряд, будет равна:

. (3.28)

Формула (3.28) определяет силу Лоренца , величина которой

где a - угол между векторами скорости частицы и магнитной индукции.

В экспериментальной физике часто встречается ситуация, когда заряженная частица движется одновременно и в магнитном и электрическом поле. В этом случае рассматривают полную силу Лоренца в виде

,

где – электрический заряд; – напряженность электрического поля; – скорость частицы; – индукция магнитного поля.

Только в магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца (рис. 3.12)

Рис. 3.12 Сила Лоренца

Магнитная составляющая силы Лоренца перпендикулярна вектору скорости и вектору магнитной индукции. Она не изменяет величины скорости, а изменяет только ее направление, следовательно, работы не совершает.

Взаимная ориентация трех векторов ‑ , и , входящих в (3.30), показана на рис. 313 для положительно заряженной частицы.

Рис. 3.13 Сила Лоренца, действующая на положительный заряд

Как видно из рис. 3.13, если частица влетает в магнитное поле под углом к силовым линиям , то она равномерно движется в магнитном поле по окружности радиусом и периодом обращения:

где – масса частицы.

Отношение магнитного момента к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите,

где ‑ заряд частицы; т ‑ масса частицы.

Рассмотрим общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость направлена под произвольным углом a к вектору магнитной индукции (рис. 3.14). Если заряженная частица влетает в однородное магнитное поле под углом , то она движется по винтовой линии.

Разложим вектор скорости на составляющие v || (параллельную вектору ) и v ^ (перпендикулярную вектору ):

Наличие v ^ приводит к тому, что на частицу будет действовать сила Лоренца и она будет двигаться по окружности радиусом R в плоскости перпендикулярной вектору :

.

Период такого движения (время одного витка частицы по окружности) равен

.

Рис. 3.14 Движение по винтовой линии заряженной частицы

в магнитном поле

За счет наличия v || частица будет двигаться равномерно вдоль , так как на v || магнитное поле не действует.

Таким образом, частица участвует одновременно в двух движениях. Результирующая траектория движения представляет собой винтовую линию, ось которой совпадает с направлением индукции магнитного поля. Расстояние h между соседними витками называется шагом винтовой линии и равно:

.

Действие магнитного поля на движущийся заряд находит большое практическое применение, в частности, в работе электронно-лучевой трубки, где используется явление отклонения заряженных частиц электрическим и магнитным полями, а также в работе масс-спектрографов, позволяющих определить удельный заряд частиц (q/m ) и ускорителей заряженных частиц (циклотронов).

Рассмотрим один такой пример, назыаемый «магнитной бутылкой» (рис. 3.15). Пусть неоднородное магнитное поле создано двумя витками с токами, протекающими в одном направлении. Сгущение линий индукции в какой-либо пространнственной области означает большее значение величины магнитной индукции в этой области. Индукция магнитного поля вблизи витков с током больше, чем в пространстве между ними. По этой причине радиус винтовой линии траектории частицы, обратно пропорциональный модулю индукции, меньше вблизи витков, чем в пространстве между ними. После того, как частица, двигаясь вправо по винтовой линии, пройдет среднюю точку, сила Лоренца, действующая на чатицу, приобретает компоненту , тормозящую ее движение вправо. В определенный момент эта компонента силы останавливает движение частицы в этом направлении и отталкивает ее влево к витку 1. При приближении заряженной частицы к витку 1 она также тормозится и начинает циркулировать между витками, оказавшись в магнитной ловушке, или между «магнитными зеркалами». Магнитные ловушки используются для удержания в определенной области пространства высокотемпературной плазмы ( К) при управляемом термоядерном синтезе.

Рис. 3.15 Магнитная «бутылка»

Закономерностями движения заряженных частиц в магнитном поле можно объяснить особенности движения космических лучей вблизи Земли. Космические лучи – это потоки заряженных частиц большой энергии. При приближении к поверхности Земли эти частицы начинают испытывать действие магнитного поля Земли. Те из них, которые направляются к магнитным полюсам, будут двигаться почти вдоль линий земного магнитного поля и навиваться на них. Заряженные частицы, подлетающие к Земле вблизи экватора, направлены почти перпендикулярно к линиям магнитного поля, их траектория будет искривляться. и лишь самые быстрые из них достигнут поверхности Земли (рис. 3.16).

Рис. 3.16 Образование Полярного сияния

Поэтому интенсивность космических лучей доходящих до Земли вблизи экватора, заметно меньше, чем вблизи полюсов. С этим связан тот факт что, Полярное сияние наблюдается главным образом в приполярных областях Земли.

Эффект Холла

В 1880г. американский физик Холл провел следующий опыт: он пропускал постоянный электрический ток I через пластинку из золота и измерял разность потенциалов между противолежащими точками A и C на верхней и нижней гранях (рис. 3.17).

Цель работы : изучить свойства магнитного поля, ознакомиться с понятием магнитной индукции. Определить индукцию магнитного поля на оси кругового тока.

Теоретическое введение. Магнитное поле. Существование в природе магнитного поля проявляется в многочисленных явлениях, простейшими из которых являются взаимодействие движущихся зарядов (токов), тока и постоянного магнита, двух постоянных магнитов. Магнитное поле векторное . Это означает, что для его количественного описания в каждой точке пространства необходимо задать вектор магнитной индукции. Иногда эту величину называют просто магнитной индукцией . Направление вектора магнитной индукции совпадает с направлением магнитной стрелки, находящейся в рассматриваемой точке пространства и свободной от других воздействий.

Так как магнитное поле является силовым, то его изображают с помощью линий магнитной индукции – линий, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции в этих точках поля. Принято через единичную площадку, перпендикулярную , проводить количество линий магнитной индукции, равное величине магнитной индукции. Таким образом, густота линий соответствует величине В . Опыты показывают, что в природе отсутствуют магнитные заряды. Следствием этого является то, что линии магнитной индукции замкнуты. Магнитное поле называется однородным, если векторы индукции во всех точках этого поля одинаковы, то есть, равны по модулю и имеют одинаковые направления.

Для магнитного поля справедлив принцип суперпозиции : магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.

В однородном магнитном поле на прямолинейный проводник действует сила Ампера :

где – вектор, равный по модулю длине проводникаl и совпадающий с направлением тока I в этом проводнике.

Направление силы Ампера определяется правилом правого винта (векторы , и образуют правовинтовую систему): если винт с правой резьбой расположить перпендикулярно к плоскости, образуемой векторами и , и вращать его от к по наименьшему углу, то поступательное движение винта укажет направление силы .В скалярном виде соотношение (1) можно записать следующим образом:

F = I×l ×B ×sin a или (2).

Из последнего соотношения вытекает физический смысл магнитной индукции : магнитная индукция однородного поля численно равна силе, действующей на проводник с током 1 А, длиной 1 м, расположенный перпендикулярно направлению поля.

Единицей измерения магнитной индукции в СИ является Тесла (Тл) : .


Магнитное поле кругового тока. Электрический ток не только взаимодействуют с магнитным полем, но и создает его. Опыт показывает, что в вакууме элемент тока создает в точке пространства магнитное поле с индукцией

(3) ,

где – коэффициент пропорциональности, m 0 =4p×10 -7 Гн/м – магнитная постоянная, – вектор, численно равный длине элемента проводника и совпадающий по направлению с элементарным током, – радиус-вектор, проведенный от элемента проводника в рассматриваемую точку поля, r – модуль радиуса-вектора. Соотношение (3) было экспериментально установлено Био и Саваром, проанализировано Лапласом и поэтому называется законом Био-Савара-Лапласа . Согласно правилу правого винта, вектор магнитной индукции в рассматриваемой точке оказывается перпендикулярным элементу тока и радиус-вектору .

На основе закона Био-Савара-Лапласа и принципа суперпозиции проводится расчет магнитных полей электрических токов, текущих в проводниках произвольной конфигурации, путем интегрирования по всей длине проводника. Например, магнитная индукция магнитного поля в центре кругового витка радиусом R , по которому течет ток I , равна:

Линии магнитной индукции кругового и прямого токов показаны на рисунке 1. На оси кругового тока линия магнитной индукции является прямой. Направление магнитной индукции связано с направлением тока в контуре правилом правого винта . В применении к круговому току его можно сформулировать так: если винт с правой резьбой вращать по направлению кругового тока, то поступательное движение винта укажет направление линий магнитной индукции, касательные к которым в каждой точке совпадают с вектором магнитной индукции.

Все элементы (dl) кругового тока создают в центре круга индукцию (dB);

откуда (61)

(62)

Закон Ампера устанавливает силу, действующую на проводник с током (модуль силы) в магнитном поле:

Направление силы Ампера определяется с помощью правила левой руки.

Взаимодействие двух проводников. Рассмотрим взаимодействие двух бесконечных прямолинейных параллельных проводников с токами и , находящихся на расстоянии R.

Используя закон Ампера (63) и формулу для магнитной индукции (60), учитывая, что для силы взаимодействия двух токов получим

(64)

Сила Лоренца – сила, действующая на заряд, движущийся в магнитном поле:

(65) или (66)

Направление силы определяется с помощью правила левой руки (на положительный заряд).

Радиус вращения r найдем из равенства

(67)

Период обращения:

(68), отсюда (69) т.е. период движения частиц не зависит от их скорости. Это используется в ускорителях элементарных частиц – циклотронах.

Ускорители делятся на: линейные, циклические и индукционные. Для ускорения релятивистских частиц используют: фазотрон – увеличивается частота переменного электрического поля, синхротрон – увеличивается магнитное поле, синхрофазотрон – увеличивается частота и магнитное поле.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная

(70)

(71) где - проекция вектора на направление нормали ,

α – угол между и

Cуммарное значение потока:

. (72)

Рассмотрим в качестве примера магнитное поле бесконечного прямолинейного проводника с током I , находящегося в вакууме. Циркуляция вектора вдоль произвольной линии магнитной индукции – окружности радиуса r:
Т.к. во всех точках линии индукции равен по модулю и направлен по касательной к линии, так что , следовательно:
Т.е. циркуляция вектора магнитной индукции в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока. Таков вывод справедлив для любого произвольного замкнутого контура, если внутри его протекает ток. Если контур не охватывает ток, то циркуляция вектора вдоль этого контура равна 0. Если токов много, то берется алгебраическая сумма токов.

Теорема: Циркуляция магнитной индукции поля в вакууме вдоль произвольного замкнутого контура L равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром. Этот закон можно также записать:

(73)

Лекция 9

3.2.(2часа) Магнитные свойства вещества. Молекулярные токи. Диа -, пара – и ферромагнетики. Вектор намагниченности. Магнитная восприимчивость и магнитная проницаемость. Представление о ядерном магнитном резонансе и электронном парамагнитном резонансе.

Магнитные моменты электронов и атомов. Все вещества, помещенные в магнитное поле, намагничиваются. С точки зрения строения атомов, электрон, движущийся по круговой орбите обладает орбитальным магнитным моментом:

(74) его модуль

(75) где - сила тока,

Частота вращения,

S – площадь орбиты.

Направление вектора определяется правилом буравчика. Электрон, движущийся по орбите, обладает также механическим моментом импульса , модуль которого

- орбитальный механический момент электрона. (76) где ,

.

Направления и противоположные, т.к. заряд электрона отрицательный. Из (75) и (76) получим

(77) где - гиромагнитное отношение. (78)

Формула справедлива и для некруговых орбит. Экспериментально величину g определили Эйнштейн и де Гааз (1915). Оно оказалось равным , т.е в два раза большим, чем (78). Тогда было предположено, а в последствии доказано, что кроме орбитальных моментов электрон обладает собственным механическим моментом импульса , называемым спином. Спину электрона соответствует собственный (спиновый) магнитный момент : . Величина называется гиромагнитным отношением спиновых моментов. Проекция собственного магнитного момента на направление вектора может принимать только одно из следующих двух значений ±еħ/2m= , где ħ= , h – постоянная Планка, - магнетон Бора, являющийся единицей магнитного момента электрона. Общий магнитный момент атома (молекулы) равен векторной сумме магнитных моментов (орбитальных и спиновых) электронов: .

Диа – и парамагнетизм. Всякое вещество является магнетиком , т.е. оно способно под действием магнитного поля приобретать магнитный момент, т.е. намагничиваться.

Если орбита электрона ориентирована относительно вектора внешнего поля произвольным образом, составляя с ним ےα, то орбита и вектор придут во вращение, которое называется прецессией (движение волчка). Прецессионное движение эквивалентно току. Наведенные составляющие магнитных полей атомов складываются и образуют собственное магнитное поле вещества, которое накладывается на внешнее магнитное поле и внутри магнетика образуется результирующее магнитное поле.

Диамагнетики – это такие вещества, в которых уменьшается магнитное поле. Для них магнитная проницаемость немного меньше 1 составляет μ ≈ 0,999935. (Объясняется действием правила Ленца). Диамагнетизм свойственен всем веществам.

Парамагнетики – вещества, в которых увеличивается магнитное поле при действии внешнего поля, для них μ больше 1, например, μ ≈ 1,00047. К парамагнетикам относятся редкоземельные элементы: Pt, Al, CuSO 4 и т.д. Объясняется ориентацией орбитальных и спиновых магнитных моментов атомов в магнитном поле. При прекращении действия внешнего магнитного поля ориентация разрушается тепловым движением атомов и парамагнетик размагничивается. Магнитная проницаемость парамагнетиков превышает таковую для диамагнетиков.

Для количественного описания намагничивания магнетиков вводят векторную величину – намагниченность , определяемую магнитным моментом единицы объема магнетика:

(79) где - магнитный момент магнетика, представляющий собой векторную сумму магнитных моментов отдельных молекул. Вектор результирующего магнитного поля в магнетике равен векторной сумме магнитных индукций внешнего поля и поля микротоков (молекулярных токов) : , отсюда В несильных полях намагниченность пропорциональна напряженности поля, вызывающего намагничивание, т.е. , где χ –магнитная восприимчивость вещества. Для диамагнетиков она отрицательна, для парамагнетиков – положительна. Из вышеприведенных формул: Здесь , используя эту формулу придем к известной формуле

Явление электронного парамагнитного резонанса было открыто в Казани в 1945 году ученым Е.К.Завойским, сотрудником Казанского университета. Сущность явления заключается в резонансном поглощении высокочастотного электромагнитного поля при его воздействии на парамагнитное вещество, которое находится в постоянном магнитном поле. При этом частота Ларморовой процессии спинов электронов совпадает с частотой внешнего электромагнитного поля и электрон поглощает эту энергию.

Магнитные моменты ядер атомов значительно слабее магнитных моментов электронов, поэтому ядерный магнитный резонанс был открыт позже, чем электронный, 1949 году в США. Процесс аналогичен электронному, но получил более широкое применение для исследования веществ. Вершиной этого применения является создание ЯМР – томографов.

Ферромагнетики. К ним относятся: железо, кобальт, никель, гадолиний, их сплавы и соединения. μ>>1, составляет несколько тысяч.

I нас – магнитное насыщение.

При насыщении ориентируется все большее количество магнитных моментов.

Характерной особенностью ферромагнетиков является то, что для них зависимость I от Н (а следовательно В от Н) имеет вид петли, которая получила название петли гистерезиса: 0 – размагниченный; 1 – насыщение (); 2 – остаточная намагниченность (), постоянные магниты; 3 – размагничивание ( – коэрцитивная сила); дальше – повторяется.

Ферромагнетики с малой коэрцитивной силой называются 1)мягкими, а с большой коэрцитивной силой – 2)жесткими. Первые применяются для сердечников трансформаторов и электрических машин (двигателей и генераторов), вторые – для постоянных магнитов. Точка Кюри – температура, при которой ферромагнетик теряет магнитные свойства и превращается в парамагнетик. Процесс намагничивания ферромагнетиков сопровождается изменением их линейных размеров и объема. Это явление получило название магнитострикция. Ферромагнетики имеют доменную структуру: микроскопические объемы, в которых магнитные моменты ориентированы одинаково. В ненамагниченном состоянии магнитные моменты доменов направлены хаотично и результирующее поле равно нулю. При намагничивании ферромагнетика магнитные моменты доменов скачкообразно поворачиваются и устанавливаются вдоль поля и ферромагнетик намагничивается. Как только сориентируются все домены, так намагниченность достигает насыщения. При остаточной намагниченности () – ориентированы часть доменов.

Существуют антиферромагнетики (соединения MnO, MnF 2 , FeO, FeCl 2).

В последнее время большое значение приобрели ферриты – полупроводниковые ферромагнетики, химические соединения типа , где Ме – ион двухвалентного металла (Mn, Co, Ni, Cu, Zn, Cd, Fe). Они обладают заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллионы раз больше чем у металлов). Нашли широкое применение в электротехнике и радиотехнике.

Напряженность магнитного поля на оси кругового тока (рис. 6.17-1), создаваемого элементом проводника Idl , равна

поскольку в данном случае

Рис. 6.17. Магнитное поле на оси кругового тока (слева) и электрическое поле на оси диполя (справа)

При интегрировании по витку вектор будет описывать конус, так что в результате «выживет» только компонента поля вдоль оси 0z . Поэтому достаточно просуммировать величину

Интегрирование

выполняется с учетом того, что подынтегральная функция не зависит от переменной l , а

Соответственно, полная магнитная индукция на оси витка равна

В частности, в центре витка (h = 0) поле равно

На большом расстоянии от витка (h >> R ) можно пренебречь единицей под радикалом в знаменателе. В результате получаем

Здесь мы использовали выражение для модуля магнитного момента витка Р m , равное произведению I на площадь витка Магнитное поле образует с круговым током правовинтовую систему, так что (6.13) можно записать в векторной форме

Для сравнения рассчитаем поле электрического диполя (рис. 6.17-2). Электрические поля от положительного и отрицательного зарядов равны, соответственно,

так что результирующее поле будет

На больших расстояниях (h >> l ) имеем отсюда

Здесь мы использовали введенное в (3.5) понятие вектора электрического момента диполя . Поле Е параллельно вектору дипольного момента, так что (6.16) можно записать в векторной форме

Аналогия с (6.14) очевидна.

Силовые линии магнитного поля кругового витка с током показаны на рис. 6.18. и 6.19

Рис. 6.18. Силовые линии магнитного поля кругового витка с током на небольших расстояниях от провода

Рис. 6.19. Распределение силовых линий магнитного поля кругового витка с током в плоскости его оси симметрии.
Магнитный момент витка направлен по этой оси

На рис. 6.20 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг кругового витка с током. Толстый медный проводник пропущен через отверстия в прозрачной пластинке, на которую насыпаны железные опилки. После включения постоянного тока силой 25 А и постукивания по пластинке опилки образуют цепочки, повторяющие форму силовых линий магнитного поля.

Магнитные силовые линии для витка, ось которого лежит в плоскости пластинки, сгущаются внутри витка. Вблизи проводов они имеют кольцевую форму, а вдали от витка поле быстро спадает, так что опилки практически не ориентируются.

Рис. 6.20. Визуализация силовых линий магнитного поля вокруг кругового витка с током

Пример 1. Электрон в атоме водорода движется вокруг протона по окружности радиусом а B = 53 пм (эту величину называют радиусом Бора по имени одного из создателей квантовой механики, который первым вычислил радиус орбиты теоретически) (рис. 6.21). Найти силу эквивалентного кругового тока и магнитную индукцию В поля в центре окружности.

Рис. 6.21. Электрон в атоме водорода а B = 2,18·10 6 м/с. Движущийся заряд создает в центре орбиты магнитное поле

Этот же результат можно получить с помощью выражения (6.12) для поля в центре витка с током, силу которого мы нашли выше

Пример 2. Бесконечно длинный тонкий проводник с током 50 А имеет кольцеобразную петлю радиусом 10 см (рис. 6.22). Найти магнитную индукцию в центре петли.

Рис. 6.22. Магнитное поле длинного проводника с круговой петлей

Решение. Магнитное поле в центре петли создается бесконечно длинным прямолинейным проводом и кольцевым витком. Поле от прямолинейного провода направлено ортогонально плоскости рисунка «на нас», его величина равна (см. (6.9))

Поле, создаваемое кольцеобразной частью проводника, имеет то же направление и равно (см. 6.12)

Суммарное поле в центре витка будет равно

Дополнительная информация

http://n-t.ru/nl/fz/bohr.htm - Нильс Бор (1885–1962);

http://www.gumer.info/bibliotek_Buks/Science/broil/06.php - теория Бора атома водорода в книге Луи де Бройля «Революция в физике»;

http://nobelprize.org/nobel_prizes/physics/laureates/1922/bohr-bio.html - Нобелевские премии. Нобелевская премия по физике 1922 г. Нильс Бор.

Все элементы кругового проводника с током создают в центре магнитные поля одинакового направления – вдоль нормали от витка. поэтому все элементы витка перпендикулярны радиус-вектору, то ; так как расстояния от всех элементов проводника до центра витка одинаково и равно радиусу витка. Поэтому:

Поле прямого проводника.

В качестве постоянной интегрирования выберем угол α (угол между векторами dB и r ), и выразим через него все остальные величины. Из рисунка следует, что:

Подставим эти выражения в формулу закона Био-Савара-Лапласа:

И - углы, под которыми видны концы проводника из точки, в которой измеряется магнитная индукция. Подставим и в формулу:

В случае бесконечно длинного проводника ( и ) имеем:

Применение закона Ампера.

Взаимодействие параллельных токов

Рассмотрим два направленных в одну сторону бесконечных прямолинейных параллельных тока I 1 и I 2 , расстояние между которыми равно R. Каждый из провод­ников создает магнитное поле, которое действует по закону Ампера на другой провод­ник с током. Ток I 1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. На­правление вектора В , определяется правилом правого винта, его модуль равен:

Направление силы dF 1 , с которой поле B 1 действует на участок dl второго тока, определяется по правилу левой руки. Модуль силы с учетом того, что угол α между элементами тока I 2 и вектором B 1 прямой, равен

Подставляя значение B 1 . получим:

Аналогично рассуждая, можно доказать, что

Отсюда следует, что , то есть два параллельных тока притягиваются друг к другу с одинаковой силой. Если токи имеют противоположное направление, то используя правило левой руки, можно показать, что между ними действует сила отталкивания.

Сила взаимодействия на единицу длины:

Поведение контура с током в магнитном поле.

Внесем квадратную рамку со стороной l с током I в магнитное поле B, на контур будет действовать вращательный момент пары сил Ампера:



Магнитный момент контура,

Магнитная индукция в точке поля, где находится контур

Контур с током стремится установиться в магнитном поле так, чтобы поток сквозь него был максимален, а момент минимален.

Магнитная индукция в данной точке поля численно равна максимальному вращательному моменту, действующему в данной точке поля на контур с единичным магнитным моментом.

Закон полного тока.

Найдем циркуляцию вектора В по замкнутому контуру. В качестве источника поля возьмем длинный проводник с током I, в качестве контура – силовую линию радиуса r.

Распространим этот вывод на контур любой формы, охватывающий любое количество токов. Закон полного тока:

Циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна алгебраической сумме токов, охваченных этим контуром.

Применение закона полного тока для расчета полей

Поле внутри бесконечно длинного соленоида:

где τ – линейная плотность намотки витков, l S – длина соленоида, N – число витков.

Пусть замкнутый контур – прямоугольник длиной х, который оплетает витков, тогда индукция В по этому контуру:

Найдем индуктивность этого соленоида:

Поле тороида (провод, намотанный на каркас в виде тора).

R – средний радиус тора, N – число витков, где – линейная плотность намотки витков.

В качестве контура возьмем силовую линию радиусом R.

Эффект Холла

Рассмотрим металлическую пластину, помещенную в магнитное поле. По пластине пропускается электрический ток. Возникает разность потенциалов. Так как магнитное поле воздействует на движущиеся электрические заряды (электроны), то на них будет действовать сила Лоренца, перемещающая электроны к верхнему краю пластины, и, следовательно, у нижнего края пластины будет образовываться избыток положительного заряда. Таким образом, между верхним и нижним краями создается разность потенциалов. Процесс перемещения электронов будет продолжаться до тех пор, пока сила, действующая со стороны электрического поля не уравновесится силой Лоренца.

где d – длина пластинки, а – ширина пластинки, - холловская разность потенциалов.

Закон электромагнитной индукции.

Магнитный поток

где α – угол между В и внешним перпендикуляром к площади контура.

При всяком изменении магнитного потока во времени. Таким образом, ЭДС индукции возникает как при изменении площади контура, так и при изменении угла α. ЭДС индукции – первая производная магнитного потока по времени:

Если контур является замкнутым, то по нему начинает протекать электрический ток, называемый индукционным током:

где R – сопротивление контура. Ток возникает из-за изменения магнитного потока.

Правило Ленца.

Индукционный ток всегда имеет такое направление, что создаваемый этим током магнитный поток препятствовал изменению магнитного потока, вызвавшего этот ток. Ток имеет такое направление, чтобы препятствовать причине, вызвавшей его.

Вращение рамки в магнитном поле.

Предположим, что рамка вращается в магнитном поле с угловой скоростью ω, так что угол α равен . в этом случае магнитный поток:

Следовательно, вращающаяся в магнитном поле рамка является источником переменного тока.

Вихревые токи (токи Фуко).

Вихревые токи или токи Фуко возникают в толщине проводников, которые находятся в переменном магнитном поле, создающем переменный магнитный поток. Токи Фуко приводят к нагреванию проводников и, следовательно, к электрическим потерям.

Явление самоиндукции.

При всяком изменении магнитного потока возникает ЭДС индукции. Предположим, что имеется катушка индуктивности, по которой протекает электрический ток. Согласно формуле в этом случае в катушке создается магнитный поток . При всяком изменении тока в катушке магнитный поток изменяется и, следовательно, возникает ЭДС, называемая ЭДС самоиндукции ():

Система уравнений Максвелла.

Электрическое поле представляет собой совокупность взаимно связанных и взаимно изменяющихся магнитных полей. Максвелл установил количественную взаимосвязь между величинами, характеризующими электрическое и магнитные поля.

Первое уравнение Максвелла.

Из закона электромагнитной индукции Фарадея следует, что при всяком изменении магнитного потока появляется ЭДС. Максвелл предположил, что появление в окружающем пространстве ЭДС связано с возникновением в окружающем пространстве вихревого электромагнитного поля. Проводящий контур играет роль прибора, который фиксирует появление в окружающем пространстве этого электрического поля.

Физический смысл первого уравнения Максвелла: всякое изменение во времени магнитного поля приводит к появлению в окружающем пространстве вихревого электрического поля.

Второе уравнение Максвелла. Ток смещения.

Конденсатор включен в цепь постоянного тока. Предположим, что цепь, содержащую конденсатор подключают к источнику постоянного напряжения. Конденсатор заряжается, и ток в цепи прекращается. Если конденсатор включить в цепь переменного напряжения, то ток в цепи не прекращается. Это связано с процессом непрерывной перезарядки конденсатора, в результате которой между обкладками конденсатора возникает изменяющееся во времени электрическое поле. Максвелл предположил, что в пространстве между обкладками конденсатора возникает ток смещения, плотность которого определяется скоростью изменения электрического поля во времени. Из всех свойств, присущих электрическому току, Максвелл приписал току смещения одно-единственное свойство: способность создавать в окружающем пространстве магнитное поле. Максвелл предположил, что на обкладках конденсатора линии тока проводимости не прекращаются, а непрерывно переходят в линии тока смещения. Таким образом:

Таким образом, плотность тока:

где - плотность тока проводимости, - плотность тока смещения.

Согласно закону полного тока:

Физический смысл второго уравнения Максвелла: источником магнитного поля являются как токи проводимости, так и изменяющееся во времени электрическое поле.

Третье уравнение Максвелла (теорема Гаусса).

Поток вектора напряженности электростатического поля через замкнутую поверхность равен заряду, заключенному внутри этой поверхности:

Физический смысл четвертого уравнения Максвелла: линии электростатического поля начинаются и заканчиваются на свободных электрических зарядах. То есть, источником электростатического поля являются электрические заряды.

Четвертое уравнение Максвелла (принцип непрерывности магнитного потока)

Физический смысл четвертого уравнения Максвелла: линии вектора магнитной индукции нигде не начинаются и не заканчиваются, они непрерывны и замкнуты сами на себя.

Магнитные свойства веществ.

Напряженность магнитного поля.

Основной характеристикой магнитного поля является вектор магнитной индукции, определяющий силовое воздействие магнитного поля на движущиеся заряды и токи, вектор магнитной индукции зависит от свойств среды, где создано магнитное поле. Поэтому вводится характеристика, зависящая только от токов, связанных с полем, но не зависящая от свойств среды, где существует поле. Эта характеристика называется напряженностью магнитного поля и обозначается буквой H .

Если рассматривается магнитное поле в вакууме, то напряженность

где - магнитная постоянная вакуума. Единица напряженности Ампер/метр.

Магнитное поле в веществе.

Если все пространство, окружающее токи, заполнить однородным веществом, то индукция магнитного поля изменится, но при этом не изменится распределенное поле, то есть, индукция магнитного поля в веществе пропорциональна магнитной индукции в вакууме. - магнитная проницаемость среды. Магнитная проницаемость показывает, во сколько раз магнитное поле в веществе отличается от магнитного поля в вакууме. Величина может быть как меньше, так и больше единицы, то есть магнитное поле в веществе может быть как меньше так и больше магнитного поля в вакууме.

Вектор намагниченности. Всякое вещество является магнетиком, то есть способно приобретать под действием внешнего магнитного поля магнитный момент – намагничиваться. Электроны атомов под действием взаимного магнитного поля совершают прецессионное движение – такое движение, при котором угол между магнитным моментом и направлением магнитного поля остается постоянным. При этом магнитный момент вращается округ магнитного поля с постоянной угловой скоростью ω. Прецессионное движение эквивалентно круговому току. Так как микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется составляющая магнитного поля, направленная противоположно внешнему полю. Наведенная составляющая магнитных полей складывается и образует собственное магнитное поле в веществе, направленное противоположно внешнему магнитному полю, и, следовательно, ослабляющее это поле. Этот эффект получил название диамагнитного эффекта, а вещества, в которых возникает диамагнитный эффект, называют диамагнитными веществами или диамагнетиками. В отсутствии внешнего магнитного поля диамагнетик немагнитен, поскольку магнитные моменты электронов взаимно компенсируются и суммарный магнитный момент атома равен нулю. Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен ВСЕМ ВЕЩЕСТВАМ.

Парамагнетиками называют вещества, у которых даже в отсутствии внешнего магнитного поля атомы и молекулы имеют собственный магнитный момент. Однако, в отсутствии внешнего магнитного поля, магнитные моменты разных атомов и молекул ориентированы хаотически. При этом магнитный момент любого макроскопического объема вещества равен нулю. При внесении парамагнетика во внешнее магнитное поле, магнитные моменты ориентируются по направлению внешнего магнитного поля, и возникает магнитный момент, направленный вдоль направления магнитного поля. Однако, суммарное магнитное поле, возникающее в парамагнетике существенно перекрывает диамагнитный эффект.

Намагниченностью вещества называется магнитный момент единицы объема вещества.

где - магнитный момент всего магнетика, равный векторной сумме магнитных моментов отдельных атомов и молекул.

Магнитное поле в веществе складывается из двух полей: внешнего поля и поля , создаваемого намагниченным веществом:

(читается «хи» ) – магнитная восприимчивость вещества.

Подставим формулы (2), (3), (4) в формулу (1):

Коэффициент - безразмерная величина.

Для диамагнетиков (это означает, что поле молекулярных токов противоположно внешнему полю).

Для парамагнетиков (это означает, что поле молекулярных токов совпадает со внешним полем).

Следовательно, диамагнетиков , а для парамагнетиков . и Н .

Петля гистерезиса.

Зависимость намагниченности J от напряженности внешнего магнитного поля H образует так называемую «петлю гистерезиса». Вначале (участок 0-1) ферромагнетик намагничивается, причем намагничивание происходит не линейно, и в точке 1 достигается насыщение, то есть, при дальнейшем увеличении напряженности магнитного поля рост тока прекращается. Если начать увеличивать напряженность намагничивающего поля, то уменьшение намагниченности идетпо кривой 1-2 , лежащей выше кривой 0-1 . При наблюдается остаточное намагничивание (). С наличием остаточной намагниченности связано существование постоянных магнитов. Намагниченность обращается в ноль в точке 3, при отрицательном значении магнитного поля , которое называется коэрцитивной силой. При дальнейшем увеличении противоположного поля ферромагнетик перемагничивается (кривая 3-4). Затем ферромагнетик можно опять размагнитить (кривая 4-5-6) и вновь намагнитить до насыщения (кривая 6-1). Ферромагнетики с малой коэрцитивной силой (с малыми значениями ) называются мягкими ферромагнетиками, и им соответствует узкая петля гистерезиса. Ферромагнетики, имеющие большое значение коэрцитивной силы называются жесткими ферромагнетиками. Для каждого ферромагнетика существует определенная температура, называемая точкой Кюри, при которой ферромагнетик теряет свои ферромагнитные свойства.

Природа ферромагнетизма.

Согласно представлениям Вейсса. ферромагнетики при температуре ниже точки Кюри имеют доменную структуру, а именно ферромагнетики состоят из макроскопических областей, называемых доменами, каждый из которых имеет свой собственный магнитный момент, представляющий собой сумму магнитных моментов большого количества атомов вещества, ориентированных в одном направлении. В отсутствие внешнего магнитного поля домены ориентированы хаотично и результирующий магнитный момент ферромагнетика в целом равен нулю. При приложении внешнего магнитного поля магнитные моменты доменов начинают ориентироваться в направлении поля. При этом намагниченность вещества возрастает. При некотором значении напряженности внешнего магнитного поля все домены оказываются ориентированы вдоль направления поля. При этом рост намагниченности прекращается. При уменьшении напряженности внешнего магнитного поля намагниченность вновь начинает уменьшаться, однако, не все домены разориентируются одновременно, поэтому уменьшение намагниченности идет медленнее, и при равной нулю напряженности магнитного поля между некоторыми доменами остается достаточно сильная ориентирующая связь, которая приводит к наличию остаточной намагниченности, совпадающей с направлением магнитного поля, существовавшего ранее.

Чтобы разрушить эту связь, необходимо приложить магнитное поле в противоположном направлении. При значениях температуры выше значения точки Кюри увеличивается интенсивность теплового движения. Хаотическое тепловое движение разрывает связи внутри доменов, то есть теряется преимущественная ориентация самих доменов. Таким образом, ферромагнетик теряет свои ферромагнитные свойства.

Экзаменационные вопросы:

1) Электрический заряд. Закон сохранения электрического заряда. Закон Кулона.

2) Напряженность электрического поля. Физический смысл напряженности. Напряженность поля точечного заряда. Силовые линии электрического поля.

3) Два определения потенциалов. Работа по перемещению заряда в электрическом поле. Связь напряженности и потенциала. Работа по замкнутой траектории. Теорема о циркуляции.

4) Электроемкость. Конденсаторы. Последовательное и параллельное соединение конденсаторов. Емкость плоского конденсатора.

5) Электрический ток. Условия существования электрического тока. Сила тока, плотность тока. Единицы измерения силы тока.

6) Закон Ома для однородного участка цепи. Электрическое сопротивление. Зависимость сопротивления от длины сечения материала проводника. Зависимость сопротивления от температуры. Последовательное и параллельное соединение проводников.

7) Сторонние силы. ЭДС. Разность потенциалов и напряжение. Закон Ома для неоднородного участка цепи. Закон Ома для замкнутой цепи.

8) Нагревание проводников электрическим током. Закон Джоуля-Ленца. Мощность электрического тока.

9) Магнитное поле. Сила Ампера. Правило левой руки.

10) Движение заряженной частицы в магнитном поле. Сила Лоренца.

11) Магнитный поток. Закон электромагнитной индукции Фарадея. Правило Ленца. Явление самоиндукции. ЭДС самоиндукции.

Просмотров