Импульсный блок питания для шуруповерта 18в. Как сделать блоки питания шуруповерта из энергосберегающих лампочек? Комплектующие элементы схемы импульсного блока питания

На просторах интернета встречается множество схем импульсных блоков питания для шуруповертов. Они или сложны и врятли поместятся в батарейный отсек, или слишком сырые, недоработанные и ненадежные. Глядя на подобные схемы возникает много вопросов, ответов на которые нет.

Данный блок питания адаптируется под любой батарейный шуруповерт путем подбора вторичной обмотки, помещается в корпус батарейного NiCd отсека и самое главное - уверенно переносит "холодный" старт двигателя. Известно, что двигатель шуруповерта имеет значительный стартовый ток, который способен вывести из строя даже мощные ИБП или как минимум спровоцировать срабатывание защиты. Описываемое устройство справляется с большими импульсами тока, обладая при этом довольно простой конструкцией.

Схема

Вот несложная схема блока, схема была нарисована на скорую руку, может позже уделю ей время и перерисую в более понятный вид. Картинка увеличивается по нажатию.

Прототипом взята схема из советских времен и усовершенствована с помощью советов обитателей форума "Радиокот". По сути это схема электронного трансформатора с "лишними" для китайских производителей деталями. Добавлен узел обратной связи по напряжению, он выделен красным. В идеале эта часть схемы не задействована, но это в процессе наладки.

Транзисторы взяты SBW13009 с запасом, это повышает надежность блока в целом. Схема обладает весьма полезным свойством: благодаря резисторам в эмиттерных цепях, блок во время холодных пусков, когда токи значительно превышают номинальные - повышает частоту преобразования. Благодаря этому импульсы больших токов ему не страшны. Запуск выполнен на VS1 и блокируется диодом VD5, когда устройство выходит на автогенераторный режим. В процессе опытов с блоком было решено отказаться от узла защиты, которая блокирует запуск при перегрузке - с шуруповертом она будет только мешать.

По совету "радиокотов" был введен снаббер C5R3, он снижает обший уровень помех от блока, уменьшает потери на коммутацию транзисторов и предотвращает появление сквозных токов. Выпрямление во вторичной цепи происходит по схеме со средней точкой, благодаря такому решению количество диодов уменьшено до 2 (диодная сборка) и уменьшены потери на тепло. Так же, для уменьшения потерь взята сборка из диодов Шоттки.

В отличие от электронного трансформатора (ЭТ) в схеме реализованы две обратные связи, по току и по напряжению. Благодаря этому блок запускается без нагрузки. Однако практика показывает, при работе вхолостую нагреваются силовые ключи, поэтому если удается добиться уверенного пуска шуруповерта без ОС по напряжению - C15 попросту не впаивается в схему.

Конденсаторный баян на выходе, вместо одного электролита необходим по причине тех же больших пусковых токов. Когда у меня стоял один конденсатор, его выводы плавились при определенном положении кнопки шурика. То есть выводы одного конденсатора не рассчитаны на такие токи, в принципе, как и сам одиночный конденсатор.

Резистор R8 выполняет две роли: первая - это не позволяет на холостом ходу развиться напряжению выше номинального, вторая - с отключенной ОС по напряжению дает пусковой ток во вторичной цепи и позволяет запуститься ШИМ-у шуруповерта.

Перемычка "П" используется в процессе наладки блока, при первом пуске и настройке вместо нее подключается лампа накаливания 100Вт, при испытании на шуруповерте просто замыкается перемычкой или предохранителем.

Детали

Рассмотрим используемые детали и возможность их замены.

Транзисторы

В качестве силовых ключей VT1-VT2 использованы биполярные n-p-n транзисторы SBW13009 в корпусе TO-3PN. Встречаются они в качественных АТХ-блоках, иных мощных импульсниках. В компьютерных АТХ обычного качества чаще встречаются MJE13009 в корпусах TO-220, их токовые параметры в два раза меньше. Их так же можно использовать, но нужно 4 транзистора вместо 2 и включать их нужно попарно, с индивидуальным резистором в эмиттере.

Данные транзисторы используются в мощных ИБП, поэтому снять их откуда-либо получится редко. А использовать MJE13009 как замену я бы не рекомендовал. Лучше раскошелиться на мощные, стоимость их в районе ста рублей за штуку.

Коммутирующий трансформатор

Трансформатор Тр2 намотан на колечке из феррита с прямоугольной петлей намагничивания. Такие кольца встречаются в подобных автогенераторных преобразователях - ЭТ, балласт энергосберегающей люминесцентной лампы. В светодиодных лампах таких колец нет! Категорически не рекомендую использовать обычный феррит, блок будет работать, но очень ненадежно, на транзисторах будет рассеиваться много тепла, сквозные токи будут обычным делом. Желтые кольца из компьютерной техники так же не подойдут!



Вариант извлечения из ЛДС энергосберегающей лампы мне кажется самым доступным - колечко можно взять из сгоревшей лампы. Так как обмотки будут выполнены обмоточным эмалированным проводом, нужно покрыть кольцо парой слоев цапонлака, на крайняк лаком для ногтей без блесток. Главное проследить чтобы лак попал на всю поверхность, в том числе на внутреннюю сторону. Лак выступает в качестве дополнительной изоляции.

Все обмотки выполнены эмалированным проводом ПЭЛ или подобным, если имеется ПЭЛШО (в дополнительной шелковой оплетке) это еще лучше. Обмотка 1 содержит один законченный виток провода не тоньше 0.8 мм. Для дополнительной изоляции его лучше поместить в отрезок изоляции монтажного провода. Обмотки 2,3,4 содержат по 4 витка 0.3-0.4 мм. Очень важно мотать все обмотки в одну сторону и помечать начало, и конец!

Силовой трансформатор

Трансформатор Тр1 намотан на двух сложенных вместе ферритовых кольцах К31х18.5х7 М2000НМ. Первичная обмотка содержит 82 витка провода 0.6 мм. Обмотка намотана по всей окружности кольца. Кольца изначально изолированы от обмотки, так же между обмотками следует выполнить надежную изоляцию. Я использовал изоленту, но лучше использовать более термостойкую, например лакоткань.

Сетевую обмотку следует аккуратно уложить виток к витку по всей окружности. Если провод не влез в один слой - нужно изолировать первый и домотать вторым слоем. Для намотки удобно использовать челнок-мотовило из более толстой проволоки.

Данные вторичной обмотки зависят от рабочего напряжения шуруповерта, для 12-вольтового 8+8 витков (16 витков в одну сторону с отводом от середины) провода не тоньше 1.4 мм. Вообще диаметр провода вторичной обмотки следует брать максимально возможный. Лучше мотать жгутом из нескольких жил (4-5 шт) провода 0.8-1 мм. Главное, чтобы обмотка уместилась в окно колец. Я к примеру, взял провод с дросселя АТХ. Про точный подбор витков для шуруповертов более 12 В или меньше немного ниже.

Во время намотки вторичной обмотки следует оставить свободное место под 2 витка обмотки номер три. Выполнить ее можно как эмалевым проводом 0.3, так и монтажным. Обмотки один и три следует помечать, где начала.

Два витка обмотки 3 должны находиться на свободном от вторичной обмотки месте.

Для трансформатора можно использовать ферритовые кольца проницаемостью 2000 других, близких размеров, главное, чтобы площадь поперечного сечения колец была не меньше. В магазине я нашел кольцо R36x23x15 PC40, в недалеком будущем испытаю его. Такое колечко может заменить два К31х18.5х7. Аналогично коммутирующему трансу, желтые комповские кольца неприменимы!

Некоторые умельцы на форумах утверждают, что мотали данный трансформатор на кольце К28Х15Х11. Возможно так и было с другими намоточными данными (первичка 100+ витков), я не рекомендую рассматривать такой вариант - нужно обладать нехилым мастерством, чтобы уложить все обмотки на маленькое кольцо!

Если для обмоток используется б/у-шный провод, следует пристально следить, чтобы лаковая изоляция не была повреждена!

Дроссель

А вот для дросселя L1 желтое колечко наоборот в самый раз! Точнее не любое желтое, а именно с дросселя групповой стабилизации (ДГС) из компьютерного блока питания. Я применил кольцо с внешним диаметром 27 мм. Намотать нужно не менее 20 витков проводом, сечением не ниже, чем у вторичной обмотки Тр1.

Конденсаторы

Все конденсаторы "горячей" части схемы должны быть рассчитаны не менее чем на 400В. В качестве C3-C4 я применил пленочные из АТХ, они на 250В, терпимо, но лучше ставить на 400. Емкость их может быть ниже, но тогда может произойти снижение мощности. Так же можно снизить C2 с 200 мкф до 100, возможно, тогда падение напряжения на нагрузке будет более крутым.

Конденсатор снаббера C5 минимум на 1000В, изначально берется 3.3n и подбирается по нагреву резистора. C15 достаточно на напряжение 50В.

В низковольтной части C6-C7 не ниже 50В, электролитические C8-C14 не ниже 25В. Количество электролитических кондеров не принципиально, главное не меньше 5 шт, номиналом 100-1000 мкф.

Резисторы

Резисторы берутся согласно указанных на схеме номиналов и мощностей. R3 взят из снаббера АТХ, габариты его несколько больше стандартных 2ВТ, поэтому не могу сказать о его мощности точно. Данный резистор может прилично греться, поэтому мощность его лучше брать побольше.

В качестве R1 взят термистор из того же АТХ, он очень малогабаритный. В крайнем случае его можно заменить на резистор 3-5 Ом 5Вт, но он занимает много места.

Диоды

Диодный мост VDS1 на 3-4А из полюбившегося АТХ, можно заменить на четыре диода 400В 3А. Диоды FR107 взяты оттуда же, меняются на любые другие с обратным напряжением не менее 1000В. Динистор VS1 можно взять из сгоревшей лампы вместе с кольцом, как правило, динистор целый.

Диодная сборка из двух диодов Шоттки VD3-VD4 - S30D40C взята с 5-вольтовой шины АТХ. Держит она 40В и 30А. Вообще, эти диоды можно взять на свое усмотрение, напряжение должно превышать рабочее в два раза и ток 15-20А. Для не слишком мощных шуруповертов можно брать сборку с 12-вольтовой шины АТХ, это актуально, когда напряжение питания шуруповерта превышает 20В, 40-вольтовая S30D40C становится не так надежна. Запас по напряжению необходим, ибо на выходе силового трансформатора могут присутствовать выбросы, превышающие номинальные значения.

Налаживание

Для налаживания следует собрать схему на макетной плате, категорически не советую собирать сразу рабочую конструкцию. Слишком большой разброс параметров трансформаторов может потребовать дополнительных решений.

Первый пуск

Для первого включения вместо перемычки "П" подключается лампа накаливания 220В 100Вт. Так же, на выход нужно подключить лампу 20-30Вт, автомобильную или галогенку 12В. Перед пуском C15 выпаивается. Правильно собранный блок начинает работать сразу: при включении галогенка на выходе светится (напряжение около 14В), защитная лампа слабо тлеет. При включении без нагрузки в трансформаторе Тр1 слышен слабый писк - это попытки пуска VS1. Защитная лампа не должна вспыхивать при включении, без нагрузки на выходе блока лампа даже не тлеет.

Работа без нагрузки

Если все совпадает с описанным - можно продолжать, если нет - ищем ошибки в монтаже или неисправные компоненты. Далее нужно определить надобность ОС по напряжению - на выход следует подключить шуруповерт. При включении шура, он должен запускаться, защитная лампа вспыхивать. Возможно, пусковых импульсов будет недостаточно для старта электроники шуруповерта. На выход подключают вольтметр и контролируют напряжение, оно должно быть в районе рабочего. При напруге в 2-3В следует уменьшить сопротивление R8, чтобы на выходе появилось устойчивое 13-15В. Резистор R8 не должен греться, максимум чуть теплым, для меньшего нагрева можно увеличить его рассеиваемую мощность. Если удалось подобрать резистор и шурик работает без дополнительной нагрузки - ОС по напряжению не нужна и C15 не понадобится вообще. При включенном блоке и не нажатой кнопке шуруповерта из блока слышен слабый писк.

При работе на галогенку транзисторы практически не греются, при работе без нагрузки нагрева нет. Максимум, что должно греться во всей схеме - резистор снаббера R3, но это пока не важно.

Если все-таки шуруповерт не запускается из-за низкого начального напряжения и подбор R8 ничего не дал, в пределах разумного, без нагрева - придется делать ОС по напряжению. Следует подключить цепь с C15, и включить блок без нагрузки. Напряжение на выходе должно быть 13-14В (при указанных намоточных данных вторички). Если блок не хочет запускаться, следует увеличить емкость C15. Так же, следует попробовать поменять местами выводы обмотки 3 силового транса. В итоге нужно добиться стабильного пуска без нагрузки с минимальной емкостью C15. При включениях защитная лампа не должна вспыхивать и даже тлеть. Недостатком ОС по напряжению может стать небольшой нагрев транзисторов на холостом ходу. Нужно погонять блок 5-10 минут для определения приемлемости нагрева.

Альтернативой для холостого запуска может стать дроссель от ЛДС энергосберегайки, включенный параллельно первичной обмотке силового трансформатора. Данный метод обладает высокой стабильностью, однако на предмет нагрева мной не исследовался.

Результатом налаживаний должен стать стабильный пуск блока (с ОС по напр.) или попытки пуска с напряжением на выходе, достаточным для запуска электроники кнопки. На холостом ходу ничего не должно греться, ну или греться незначительно. Исключение может составлять резистор снаббера R3, но это уже следующим этапом.

Вольтаж шуруповерта

Намоточные данные вторичной обмотки 8+8 витков рассчитаны на шуруповерт 12В. Могу с уверенностью сказать, что данная обмотка подойдет к профессиональны моделям 14,4В. Я подключал блок к своему рабочему шуруповерту 14,4В на литиевой батарее, который без проблем закручивает саморезы 4Х80 мм в сырое дерево без предварительного сверления. Такие саморезы от блока конечно не закручивал, но кожу подсодрал, пытаясь остановить вал.

Если вольтаж вашего отличается от 12В, то следует подкорректировать намоточные данные обмотки 2. Доматывая или отматывая витки, нужно мерить напряжение с нагрузкой - галогенной лампой 30Вт, без нагрузки напряжение будет немного больше. Я ориентировался на напряжение питания (12В) + 1В на просадку (можно не учитывать). Вообще, если шуруповерт 14,4В, не следует сразу мотать лишние витки, возможно все будет работать с должной мощностью без добавления витков. Так же хочу отметить 18В шуруповерты - несмотря на надписи на корпусе, зачастую там стоят двигатели на 12В. Про испытания на мощность немного ниже.

Так же нужно иметь в виду, что без нагрузки блок может развивать немного большее напряжение, поэтому хорошим делом будет поискать датащиты на кнопку и максимальное напряжение ее ШИМ-а. Самое главное, чтобы напруга на ХХ не превышала этот максимум. Между прочим, на аккумуляторной батарее шуруповерта без нагрузки так же напряжение немного выше номинального, для 14,4В батареи это 16 с небольшим вольт. Однако, из-за сложности подобрать напряжение обмотки точно, блок может выдавать немного больше или меньше, чем на батарее. В общем здесь все подбирается экспериментально и с головой, а если вы собрали макетный блок - голова работает.

Рабочий пуск

Теперь следует снять защитную лампу и заменить ее перемычкой или предохранителем 3-4А. Не уверен, что от предохранителя есть толк, я его ставил для самоуспокоения. Попробовать пуск с галогенкой на выходе, холостом ходу - все должно быть стабильно и без перегрева.

Теперь можно подключать шуруповерт и оценить мощность вращения. Мой зеленый бош работал так, что наверное с новой батареей было меньше мощности, при этом не перегревался. Для защиты шуруповетра от слишком больших токов в разрыв цепи можно воткнуть ограничительный шунт, заодно и померить токи. Защиту на полевом транзисторе делать я не стал, да и толку от нее не вижу: напряжение падает пропорционально увеличению тока, импульсы тока при слабом нажатии кнопки огромны (хоть и очень короткие) и будут заставлять защиту включаться.

Необходимо проверить конденсаторный баян на выходе на нагрев при больших нагрузках. У меня фиксировалась самая большая нагрузка в момент слабого нажатия кнопки, когда двигатель пищит. При этом ноги одиночного конденсатора обгорали.

Я не смог остановить шуруповерт рукой никак! Зато натер приличные мозоли! Все-таки ограничительный шунт не помешает в рабочем блоке, здесь следует руководствоваться ощущением силы вращения, а не измерениями, и контролировать нагрев двигателя. Я шунт не поставил в конечную версию, слишком много места он занимает. Ориентировочно, шунт, ограничивающий ток в 20А это: 12В(по факту просядет ниже)/20А=0,6 Ом. Взять щунт 0,6 Ом и ориентируясь на мощность вращения корректировать в сторону уменьшения, пока не появится излишнего нагрева.

Китайским мультиметром и шунтом я намерял максимальный ток где-то между 15 и 20А, это при торможении, на сколько хватало сил и руки. При слабо нажатой кнопке, когда двигатель пищит еще не запускаясь, токи были более 20А. Стоит отметить, что измерения очень приблизительные и могут сильно отличаться от реальности - цифровой мультиметр не в состоянии адекватно измерить пульсирующее напряжение на шунте. Если вы совсем новичок и не знаете, как измерить большой ток шунтом и мультиметром - про это будет небольшой обзорчик, а пока... Зачем оно вам надо?

Снаббер

Как я писал выше, цепочка C5R3 может сильно греться, точнее именно резистор. И даже если нагрева нет на ХХ или малых нагрузках, при большой нагрузке резистор может аж вонять. Объясняется это повышением частоты преобразования с повышением выходного тока, следовательно, сопротивление конденсатора уменьшается. Изначально C5 следует брать 3.3 нанофарада (3300 пФ) и подбирать по нагреву резистора, уменьшая емкость. Я остановился на 1000 пФ. Обратите внимание, что щупать детали следует на выключенном блоке и разряженном конденсаторе C2. Выпрямленное и отфильтрованное сетевое напряжение составляет около 310В!

Не стоит уменьшать емкость конденсатора с запасом, чтобы нагрева не было вообще! Тогда от него будет мало толку. Нагрев должен быть терпимым для длительного использования.

Печатная плата

Я плохой проектировщик печаток, поэтому плата у меня получилась громоздкой, двухэтажной. Если кто будет разрабатывать свою печатную плату - буду благодарен если предоставите рисунок, контакты в подвале сайта.

Два уровня платы сделаны из двух кусков стеклотекстолита 70Х70 мм. На первом этаже находятся фильтрующие конденсаторы, силовой трансформатор и мягкими проводами подпаяны транзисторы. Печатка прорезана острым резаком без всякого травления. Монтаж деалей обычный, в отверстие, рисунок со стороны медной фольги. Подпаянные транзисторы находятся на радиаторе под платой вместе с диодной сборкой Шоттки VD3, VD4.

Платы соединены между собой медным одножильным монтажным проводом, перемычка с эмиттера VT1 лишняя, она задумывалась для работы защиты, от которой я отказался.

Вторая плата выполнена поверхностным монтажем. У меня влезли не все выходные конденсаторы, пришлось их добавлять в корпус батареи.

На вторую плату подается сетевое напряжение, с нее же берется выходное. С диодной сборки приходит +, на которую в свою очеред приходят крайние выводы вторички Тр1. При уверенной работе без ОС по напряжению, цепь с С15 не нужна, как и соответствующие этой цепи обмотки.

На плату не влезли все конденсаторы выходного конденсаторного баяна, поэтому несколько конденсаторов пришлось расположить в клеммном углублении батарейного отсека.

Дно батарейного корпуса пришлось вырезать, так как плата не влезла полностью, к тому же для надежности был использован радиатор. В конечном итоге у меня получился такой блок:

При грамотном проектировании и использовании подходящих компонентов, блок все-таки можно поместить в родной корпус батареии не вылазия за его пределы. Мне это почти удалось. С другой стороны, если использовать блок отдельно от шуруповерта, можно вообще не переживать за габариты. Однако в таком случае придется использовать провод от преобразователя до шурика сечением не менее 2,5 мм2. На 4-х метровом проводе 1,5 мм2 мощность немного падает.

Данное решение является интересным с точки зрения применения: никаких ШИМ-ов и сложных схем, его можно применять для питания различных мощных приборов. Не зря ведь эту схему широко используют для питания галогенных ламп!

На этом мы закончим описание, позднее здесь же дам объективную оценку использования блока в реальных, рабочих условиях стройки. Предварительная оценка по мощности вращения: 5+!

Обновление от 28.12.2019

Блок питания очень мощный, вполне справляется с долгим сверлением. В реализации без ОС по напряжению, блок может быть подключенным к сети хоть целые сутки - нагрева нет.

Однако в процессе эксплуатации на объекте выявился существенный недостаток: при заклинивании вала двигателя могут перегорать силовые ключи. У меня всегда вылетал "минусовой" транзистор (нижний по схеме), а второй оставался целым.

Так как заклинивание вала эквивалентно короткому замыканию на выходе БП, нужно принять меры, устраняющие это явление. Посмотрим на работу аккумуляторного инструмента - за счет "мягкой" вольт-амперной характеристики (ВАХ) батареи, при слишком больших нагрузках и заклинивании просаживается напряжение, в следствии чего уменьшается и ток.

Опытов еще не проводил, но считаю полезными меры по "смягчению" ВАХ:
1. Вторичную обмотку силового трансформатора нужно мотать "кучнее", без разнесения по всему кольцу.
2. Номинальное напряжение на выходе (под нагрузкой лампы 30 Вт, например) снизить на несколько вольт путем уменьшения числа витков вторички. То есть если шуруповерт на 14,4 В, то подобрать напряжение на выходе БП 9-10. Вполне возможна просадка мощности вращения после таких манипуляций, тут следует найти оптимальный вариант.

Делать защиту в "горячей" части блока считаю неактуальным, ибо при больших нагрузках защита будет часто срабатывать и потеряется удобство в работе. Все-таки меры по "смягчению" ВАХ мне кажутся более приемлемыми.

Будет очень интересно узнать ваш опыт, если будете собирать схему и пытаться сделать "мягким" заклинивание вала. Контакты в подвале сайта.

Мобильный шуруповерт на аккумуляторной батарее получил широкое распространение в строительстве. Одним из существенных недостатков модели является износ аккумулятора, при износе которого приходится покупать новый шуруповерт или искать аккумулятор. Нестандартное решение предлагают радиолюбители — сделать своими руками блок питания для шуруповерта 18 В.

Простое восстановление инструмента

Основным преимуществом аккумуляторного шуруповерта является его мобильность. Применяется в таких инструментах литий-ионный аккумулятор, который защищен от перегрузки и полной разрядки. Кроме того, существует защита и от перезарядки в виде отдельной схемы, встроенной в сам элемент. Основным источником питания (первичным) является 220 В, выполняется и подзарядка аккумуляторной батареи.

В зависимости от модели шуруповерта на аккумулятор поступает напряжение зарядки от 14 В до 21 В. На выходе батареи получается напряжение питания от 12 до 18 В. Этот тип АКБ служит долго, но если инструментом не пользоваться продолжительное время, не поможет и встроенная защита от разрядки элементов батареи: разрядка происходит постоянно.

Для увеличения срока службы необходимо постоянно разряжать и заряжать батарею. Если по какой-то причине не удалось «уследить» за инструментом, часто выходит из строя какой-либо конкретный элемент аккумулятора. Существуют основные способы решения этой проблемы:

  1. Заменить батарею на новую.
  2. Приобрести новый инструмент.
  3. Переделать шуруповерт с питанием от сети.

При замене аккумулятора необходимо учесть, что новый достаточно сложно найти. Инструменты делают так, чтобы тяжело было найти для них запчасти. Фирме невыгодно производить свое изделие с высокой ремонтоспособностью, так как ей нужны доходы от покупки продукции. Найти новый аккумулятор возможно только у дилеров. Кроме того, возможен еще вариант: разобрать аккумуляторную батарею и поменять неисправный элемент питания.

При покупке нового инструмента пользователь стремится купить модель более качественного образца, забывая о правилах эксплуатации аккумуляторов литий-ионного типа. Основные правила, которые помогут надолго сохранить срок службы инструмента:

  1. При покупке в зимний период «запускать» инструмент сразу категорически запрещается. Нужно подождать около часа, пока он не «прогреется» до уровня комнатной температуры.
  2. Поставить батарею на зарядку.
  3. Цикл зарядки и разрядки АКБ выполнить около 3 раз.

Если ни один из вариантов решения проблемы не подходит, нужно приступить к переделке шуруповерта на сетевой своими руками. Сделать это просто. Существует множество простых и сложных способов. Изменение модели инструмента имеет несколько положительных сторон:

  1. Нет необходимости подзарядки батареи.
  2. Множество вариантов блоков питания.
  3. Увеличение качественных характеристик изделия.

Другие способы модернизации

Радиолюбители предлагают много вариантов модернизации инструмента. Одни из них очень просты и сводятся к применению готовых блоков питания, а другие требуют знаний в области электротехники и придают устройству универсальность. Классификация способов:

  1. Адаптер питания для ноутбука.
  2. Подключение компьютерного импульсного БП (блок питания).
  3. Применение автомобильный аккумулятор на 12 В.
  4. Сборка самодельного источника питания.

Использование зарядника для ноутбука является оптимальным решением проблемы. Кроме того, необходимо знать параметры шуруповерта и зарядника (есть на 12 В и 19 В), а также учесть габариты последнего (для монтажа в аккумуляторный отсек). Нужно припаять выход адаптера питания ноута, к клеммам которого подсоединяется батарея.

При использовании импульсного БП (мощность от 350 Вт и выше) для персоналки (форм-фактор АТ) необходимо найти напряжение питания 12 В на разъемах, питающих винчестер или привод для чтения компакт-дисков. Вывести провода, а остальные аккуратно обрезать и заизолировать. Можно собрать корпус для БП, что позволит получить ток до 16 А. Кроме того, необходимо снять защиту от запуска. Для этого нужно соединить зеленый провод с черным из этого разъема. Эти два способа являются очень простыми и не требуют дополнительного описания.

Автомобильный аккумулятор является оптимальным источником электрической энергии. При модернизации модели ничего не изменилось, кроме подключения другой батареи. Существенным недостатком является его масса. Кроме того, нужно собрать зарядное устройство или приобрести в специализированном магазине.

Сборка своего БП является оптимальным решением для тех, кто поддерживает качество. Предыдущие варианты хороши, но не позволяют добиться гибкости применения. Например, они применимы только для шуруповертов с напряжением 12, а не 18 В. Есть зарядные устройства, рассчитанные на напряжение 19 В. Получение 18 В достигается путем последовательного соединения аккумуляторных батарей, например, 12 и 6 В. Следует учесть, что по характеристикам батареи должны отличаться только в плане напряжения. Именно поэтому часто и возникает необходимость собрать источник питания самостоятельно.

Схемы и их описание

Вариант самостоятельной сборки БП необходимо производить при условии знаний в области радиотехники. Кроме того, перед сборкой нужно хорошо все обдумать, найти корпус для монтажа и соответствующие радиоэлементы.

Простой вариант БП

Простая схема 1 БП (шуруповерта от сети 220 вольт), состоящая из трансформатора питания (вход диодного моста), выпрямителя и конденсаторного фильтра.

Схема 1 — Блок питания для шуруповерта 18 В

Трансформатор нужно подобрать с мощностью от 300 Вт и выше, напряжение на II обмотке должно быть в диапазоне от 20 до 24 В и силой тока свыше 15 А. Для диодного моста следует использовать мощные диоды, подобранные под ток вторичной обмотки. Сложнее будет подобрать соответствующее питание для шуруповерта. На выходе выпрямителя необходимо поставить конденсатор емкостью от 2000 мкФ (можно ограничиться емкостью на 470) и напряжением от 25 В и выше. Детали необходимо брать с запасом по току и напряжению. Все радиоэлементы монтируются на гетинаксовую плату, которая крепится в корпусе.

Универсальный адаптер питания

Предложенный вариант универсального БП обладает отличными характеристиками и выдерживает ток нагрузки до 10 А. Напряжение на выходе составляет 18 В, хотя можно произвести расчеты и сделать блок питания для шуруповерта 12 В. Этот БП можно применять в качестве зарядного устройства для аккумуляторной батареи (АКБ) и резервного источника питания при обесточивании сети (схема 2).

Адаптер собран на стабилизаторе напряжения, состоящего из транзистора VT3 и VD2-VD5 (стабилитроны). При помощи тумблера SB1 включается питание и замыкает свои контакты реле К1. Питание идет на трансформатор, который преобразует переменный ток до необходимого номинала. Выходной ток с трансформатора поступает на выпрямитель. Далее выпрямленное напряжение поступает на стабилизатор. Присутствует в схеме и усилитель тока, собранный на транзисторах VT1 и VT2. К этому усилителю подключается нагрузка. Режим подзарядки аккумулятора (резервный источник питания) осуществляется через VD6 и ограничитель в виде резистора R4. При помощи SB2 можно отключить подзарядку батареи.

Схема 2 — Универсальный БП для шуруповерта и зарядки АКБ

При отсутствии напряжения питания 220 В реле обесточивается, и напряжение с батареи подается на другие контакты реле (питание напрямую от АКБ). Для защиты от токов КЗ и перегрузок используются предохранители. Такую систему можно использовать без резервного источника питания. Дополнительная наладка не требуется.

Перечень радиодеталей указан на соответствующей схеме 2, однако возможны и замены аналогами, например:

После сборки осуществляется монтаж и приведение изделия к соответствующему виду, дизайн выбирается самостоятельно.

Адаптер на 12 В

Адаптер собирается на микросхеме 7912 и представляет собой линейный регулятор. Транзистор увеличивает мощность БП (схема 3). Этой самоделкой можно запитать и шуруповерт на 18 В, для чего необходимо рассчитать трансформатор.

Схема 3 — Блок питания для шуруповерта 12 В

Вторичный источник питания представляет собой трансформатор, на выходе которого 16 В (для модели с питанием на 12 В постоянного тока) или 22 В (питание шуруповерта 18 В). Выпрямитель собирается из обычных диодов с обратным напряжением свыше 50 В (возможно использовать уже готовые варианты). Сглаживающий фильтр представляет собой конденсатор высокой емкости около 10000 мкФ, но чем больше эта величина, тем лучше.

Микросхему нужно приобрести в специализированном магазине радиодеталей. Кроме того, в схеме использованы светодиоды, позволяющие производить диагностику при неисправностях БП. Радиоэлемент 2N3055 является транзистором p-n-p структуры и его можно заменить любым (аналог нужно подбирать из справочной литературы с напряжением около 50 В и током более 5 А). Возможно применение ЛУТ для изготовления монтажной платы. В интернете подробно описан процесс изготовления печатной платы по лазерно-утюжной технологии (ЛУТ).

Регулируемая модификация

Регулируемый БП очень удобен в использовании и является универсальным. Благодаря регулируемым значениям напряжений можно запитать любую технику, использовать для зарядки аккумулятора. Основным элементом является микросхема типа LM317. Усиление происходит при помощи двух транзисторов типа 2N3055, но можно применять и более мощные, ведь от этого мощность БП возрастает и позволяет получить ток до 20 А. Транзисторы устанавливаются на радиатор, и желательно применить в конструкции еще и вентилятор для охлаждения (кулер с персонального компьютера на 12 В).

Схема 4 — Регулируемый БП

Перечень деталей:

При сборке нужно изолировать транзисторы применением теплопроводящих прокладок. Кроме того, при любых сборках мощных БП следует использовать толстые провода.

Правила эксплуатации

Если шуруповерт обладает сравнительно небольшой мощностью, нужно произвести монтаж самодельного БП в аккумуляторном отсеке. При отдельной сборке во всех БП нужно обеспечить охлаждение, использовав вентилятор или двигатель с крыльчаткой. Корпус не должен быть герметичным, так как произойдет перегрев (горячему воздуху некуда будет выходить). При готовности БП нужно проверить шуруповерт в комплексе с источником питания. Основные требования к использованию инструмента, позволяющие продлить эксплуатационный период:

  1. Время работы: 30-40 минут, после чего необходимо сделать паузу до полного остывания.
  2. Избегать работ на больших высотах.
  3. Следить за состоянием питающего кабеля, аккумулятора (если он используется), температурой инструмента и самодельного БП.

Таким образом, при выходе из строя аккумулятора шуруповерта на 18 В можно избежать лишних затрат. Если важна мобильность, то имеет смысл приобрести новый аккумулятор или сам инструмент. Существует множество вариантов, предложенных радиолюбителями для продления его срока службы. Необходимо выбрать оптимальный из них для конкретного случая применения устройства.

Самый главный плюс аккумуляторного шуруповёрта — возможность автономного функционирования. Конечно, если пользоваться шуруповёртом достаточно часто, то он выйдет из строя.

Вариант с покупкой новой батареи не актуален, поскольку, исходя из её стоимости, проще будет сразу купить новый шуруповерт.

На мой взгляд, оптимальный выход из ситуации — переделать аккумулятор в БП (блок питания). Это обеспечивает возможность как сетевого, так и аккумуляторного питания. Собственно так я и поступил в случае со своим собственным инструментом.

Конструкция шуруповёрта

Конструкция шуруповерта довольно проста: электродвигатель, клавиши запуска и аккумулятор.

Примерные подсчёты показывают, что 75 % стоимости шуруповёрта составляет именно батарея. При неполадках с этим компонентом существует три рациональных решения проблемы:

  • Починка имеющейся аккумуляторной батареи;
  • Работа с выносным аккумулятором (например, автомобильным);
  • Модернизация аккумулятора инструмента под сетевое питание;
  • Покупка нового элемента.

Что такое аккумулятор?

Аккумуляторы (которые иначе называются аккумуляторными батареями) используются для того, чтобы накапливать электроэнергию и обеспечивать автономное функционирование энергопотребляющих устройств. Вся батарея компонуется из некоторого числа последовательно соединённых аккумуляторов («банок»).

Напряжение каждого отдельного аккумулятора является частью общего, даваемого аккумуляторной батареей рабочего напряжения.

Определение неисправности аккумулятора

Вполне может оказаться, что у всей батареи неисправен только один элемент, а значит производить полную замену нет смысла, поэтому не поленитесь и проверьте каждую «банку» в ней.

Для такой проверки потребуется только обыкновенный мультиметр. Изначально всю аккумуляторную батарею следует поставить на зарядку и дождаться пока она завершится, а после замерить уровень напряжения в каждом из элементов цепи и выявить, где оно не соответствует номинальному. Именно эти элементы, скорее всего, подлежат замене.

Удостовериться в этом можно, если дождаться, когда батарея разрядится. Тогда производится повторная оценка уровня напряжения на каждой из банок. На неисправных элементах «проседание» уровня напряжения будет наиболее очевидным. И если такой элемент всего один, то гораздо проще заменить его.

В противном случае лучше будет просто отказаться от аккумулятора в пользу блока питания.

Что нужно учесть при замене батареи на блок питания

Подбирая блок питания шуруповерта, я ориентировался в первую очередь на его размеры, поскольку было необходимо, чтобы он «вписался» в корпус аккумулятора.

Для большей точности размер корпуса нужно вымерять изнутри, изъяв предварительно все составляющие компоненты.

Потом, с учётом мощности и ориентируясь на напряжение, высчитал ток потребления (конечно, было бы гораздо лучше, будь он тоже уже указан, но его не было). Конечно, если к вычислениям душа не лежит, то можно попробовать выбрать блок питания на вскидку.

Когда я покупал себе питающий блок, то кроме потребляемого тока, оценил и уровень ёмкости слетевшего аккумулятора. Допустим, что ёмкость равняется 1,2 ампер/час, а времени на полную зарядку требуется около 2,5 часов, тогда вырабатываемый ток примерно равен промежуточному значению между этими двумя числами (1,9 А).

Чтобы не ошибиться с выбором перед походом в магазин, записал для себя следующие параметры, которые нужно учитывать, когда собираешься подключать блок питания шуруповерта своими руками:

  • Габариты;
  • I(min);
  • Необходимый уровень питающего напряжения.

По своему опыту могу отметить, что шуруповёрт переделанный под питание от сети, становится гораздо легче. Лично для меня это был приятный момент,ну а шнур с вилкой непомеха.

Значение при покупке или сборке шуруповёрта имеют не только технические характеристики, но и надёжность, лёгкость, удобство и незначительные габариты.

Немалую важность имеет и падающая нагрузочная характеристика. Во время перегрузок, именно она, является главной страховкой инструмента от поломки. Хорошо, если конструкция устройства будет простой, а детали входящие в неё ,будут широко доступны.

Под выдвинутые мной требования подходили импульсные блоки питания, поскольку они гораздо компактнее трансформаторных. Хочу обратить ваше внимание на тот факт, большая часть китайской продукции такого плана имеет характеристики гораздо меньшие, чем те, что указаны на упаковке/корпусе, а советский БП обладает большими размерами и характеризуется низким КПД.

Приобрести блок питания можно на блошином рынке или рынке для радиолюбителей. Не забудьте обсудить с продавцом возможный возврат блока, а прежде, чем встраивать его, попробуйте просто подключить к инструменту и вкрутить 3 — 4 шурупа.

Переделка шуруповёрта

Когда я подобрал и проверил блок питания, то решил, что можно приступать к переделке.

Сначала снял корпус БП. Мне повезло, он крепился на саморезы, со склеенным пришлось бы возиться дольше. Если у вас всё-таки склеенный шов, то необходимо простучать его молотком, ещё можно попробовать разобрать его с помощью лезвия ножа, подбивая его молотком, тогда корпус точно поддастся.

Потом я взялся за вилку: отпаял шнур с выводами. Когда этот момент был выполнен, я поместил «обнажённый» блок питания в разъём для аккумулятора и через специальное отверстие в аккумуляторном корпусе подвёл к БП шнур для подключения к сетевому питанию. Выход блока с соблюдением полярности был соединён с клеммами. Потом всю конструкцию поместил в аккумуляторный корпус.

Наконец, попробовал вкрутить несколько шурупов — всё исправно работало.

Существует вариант, что устраивающий вас блок питания окажется слишком велик по размерам, тогда логично будет обустроить для него подходящий разъём в рукоятке.

В процессе работы нужно, чтобы батарея не находилась под напряжением, поэтому я подсоединил блок питания шуруповерта параллельно относительно питающих выводов, а на разрыве плюсового провода сделал диодный переход с необходимым уровнем мощности. При этом минусовой полюс сориентировал на мотор.

В независимости от качества используемого блока питания,из-за уровня нагрузки, которую даёт действующий шуруповерт вероятность перегрева весьма высока. По этой причине я «расставил» элементы БП внутри корпуса максимально просторно.

Также подправить ситуацию можно дополнив управляющую микросхему несколькими новыми радиаторами. После внесения изменений обязательно производится проверочный запуск инструмента, который позволяет удостовериться в том, что шуруповерт не нагревается. Такая проверка поможет вам самостоятельно разобраться в том, для каких элементов особенно необходимо охлаждение. Возможно, что для решения данной проблемы понадобится сделать несколько отверстий в корпусе.

Автомобильный аккумулятор как замена родному

Если работать нужно, а розетки поблизости не оказалось, могу предложить воспользоваться автомобильным аккумулятором. То есть зажимы с шуруповерта можно просто перекинуть на этот аккумулятор. Но такое средство походит только для крайних случаев в качестве экстренной меры.

Обратите внимание: для большинства автомобильных аккумуляторных батарей уровень рабочего напряжения недостаточен, чтобы питать шуруповерт. Тем более, что для таких целей никто не будет применять новые элементы, а у старых данный показатель едва достигает 11 Вольт, при том, что могут потребоваться все 19 Вольт. Как итог: малая эффективность инструмента, слабая сила кручения.

Блок питания от компьютера

Радиорынок богат таким продуктом. Тем более, что стоит он довольно мало. Для наших целей более всего подходят элементы АТ-типа.

Особенно удобно использовать компьютерный БП по той причине, что все его характеристики указаны правильно, а не так, как это происходит с некоторыми пусть даже и новыми элементами из Китая.

Блоки данной категории оснащены кнопкой включения и имеют встроенный охлаждающий вентилятор и у них довольно хорошая система предотвращения перегрузки. Но если вы будете самостоятельно мастерить новый корпус, то обеспечьте наличие в нём достаточных размеров вентиляционного отверстия.

Компьютерный блок питания можно использовать как в собранном виде, так и в разобранном. В первом случае это будет выносной элемент, а во втором – встроенный в шуруповерт. В компьютерном блоке питания вы найдёте всё, что только может понадобиться: трансформатор, достаточно мощная диодная сборка (у меня такая была на 5 Вольт) и т.д. А силовые транзисторы, например, можно взять от монитора того же компьютера. А микросхему для сборки можно купить, тем более, что стоит она всего-ничего.

Учтите, что диоды обязательно устанавливаются на теплоотвод и изолируются от радиатора с помощью слюдяных прокладок.

Самостоятельная сборка блока питания

Видоизменить шуруповерт таким образом, чтобы обеспечить ему возможность подключения к сети, можно и по-другому. Для этого нужно будет собрать переносной блок питания шуруповерта.

При проверке подобной схемы, я подключал к инструменту кабель с вилкой на одном конце.

Потом воспользовался блоком питания с соответствующими параметрами, но на эту роль подойдёт и трансформатор с выпрямителем (аналогично нужно учитывать соответствие параметров требуемым).

Если у вас мало опыта, то с трансформаторными катушками придётся попотеть. Многие вообще отказываются от данной затеи в связи с трудностями, которые возникают при высчитывании количества необходимых витков и выборе проволоки подходящего диаметра. Делая обмотку, нужно понимать, что нужное количество витков не всегда может вместиться в один слой, поэтому обязательно тщательно изолируйте один слой от другого (учитывайте, что один виток при диаметре провода в 4 мм – это 2 вольта).

Наиболее удобным выходом будет воспользоваться трансформатором из старого или нерабочего устройства. Конечно, любой не подойдёт, нужно, как и всегда, учитывать сопадение параметров, а если всё в порядке то можно браться за сборку выпрямителя.

Спаивать выпрямительный мост придётся из полупроводникового диода. Важно оценить совпадение параметров этого элемента с требуемыми.

При наличии минимальной осведомлённости о том, как строятся электрические схемы, можно изготовить блок питания шуруповерта своими руками.

Согласно приведённой схеме, собирая блок питания шуруповерта, можно применять трансформаторы из старых ламповых телевизоров или иной ненужной уже техники. При этом они должны обладать следующими характеристиками:

  • Уровень напряжения — 220 Вольт;
  • Мощность — 250-350 Ватт;
  • Уровень напряжения (вторичная обмотка) — 24-30 Вольт (можно не учитывать, если сила выходного тока составляет от 15 Ампер и более);
  • Не импульсный донор.

Кроме того, занимаясь сборкой блока питания не забывайте о необходимости качественной изоляции и обеспечения защиты от коротких замыканий. Для этих целей на входных и выходных цепях устанавливаются предохранители.

Увеличение мощности аккумулятора

Для обозначенной цели можно применить рабочие батареи от любых ныне бездействующих приборов. Я, например, брал литиевую батарею у убитого ноута (ток на 2,2 кА).

После извлечения требуемого элемента, припаял проводку от него к старой батарее (с соблюдением полярностей).

При последующей проверке подобная конструкция работала исправно. Для разъёма, через который производится зарядка, можно дополнить корпус специальным отверстием.

Зафиксировать новый аккумулятор можно при помощи термоклея. Тогда можно переходить к сборке корпуса.

Модернизированный шуруповёрт нужно использовать руководствуясь следующими правилами:

  • Если вы непрерывно используете инструмент более четверти часа, то обязательно сделайте небольшую паузу;
  • Следите за чистотой БП, он не должен покрываться слоями пыли;
  • Не используйте блок, не оборудованный заземлением;
  • Переоборудованный шуруповёрт не подходит для работы на высоте более 2-х метров;
  • Нельзя подключать инструмент к сети через несколько последовательно соединённых удлинителей.

Соблюдение приведённых правил позволит долго и беспроблемно пользоваться шуруповёртом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Любой бытовой инструмент, способный функционировать автономно, имеет существенный недостаток. Поддерживать АКБ в нормальном состоянии хлопотно, в процессе работы она требует регулярной зарядки, срок хранения ограничен, а стоимость подобного источника питания такова, что приобретение нового довольно сильно «бьет по карману».

Да и найти его не всегда получится, особенно если шуруповерт старой модификации. Вывод напрашивается простой – сделать блок питания для шуруповерта на 18 вольт своими руками.

Наиболее рациональное решение – подобрать комплектующие или переделать уже имеющийся блок питания от любого технического устройства. Это можно сделать и своими руками, без посторонней помощи.

На что обратить внимание:

  • Габариты. Идеально, когда готовый блок питания помещается в пластиковом корпусе от штатной батареи. Никаких проблем в процессе работы шуруповертом.
  • Предел по току. Если данный параметр не учитывать, то должного крутящего момента не добиться. Уточнить значение можно по паспорту шуруповерта. При отсутствии оного – по батарее, которым он комплектовался. Как правило, ток выбирается примерно в 1,6 (±0,2) раза больший, чем емкость (в А/ч) аккумулятора.
  • Выходное напряжение. Стоит учесть, что при подключении нагрузки у некоторых блоков питания оно может падать на 1 – 2 В. Для использования эл/инструмента непринципиально, но знать следует.
  • Тип БП. По оценке специалистов и мастеров-практиков, лучший вариант блока питания для шуруповерта – импульсный. Отсутствие силового трансформатора в схеме снижает вес изделия и уменьшает его габариты. Это самые компактные из всех БП.

Приобретя блок, останется лишь переделать «бокс», в котором помещалась АКБ. Это единственное, что сделать своими руками может даже дилетант.

  1. Первое. Высверлить в пластике отверстие (проще простого), завести внутрь корпуса провод (шнур) питания и присоединить (припаять) к выводам БП. Самый оптимальный вариант.
  2. Второе. В проводнике «+» установить п/п диод соответствующей мощности, катод которого – в сторону эл/двигателя шуруповерта.

Тем, кто имеет и мультиметром, «народные умельцы» предлагают столько схем, что выбрать что-либо подходящее не составит труда. Вот лишь некоторые из всего списка, который нетрудно составить:

  • Блоки питания универсальные.
  • На основе двух- и трехполюсных резисторов.
  • Импульсные.
  • С фильтрами.
  • Блоки со схемой усиления и ряд других.

Что в подавляющем большинстве у них общего? Кроме импульсных модификаций – понижающий трансформатор, так как речь идет о вторичном (питающем для шуруповерта) напряжении номиналом 18 В. В этом и главная сложность. Подобрать Тр можно, но, к сожалению, на схемах указываются не все параметры радиодеталей. Если обозначена величина сопротивления, то не указана мощность; не все типы полупроводников обозначены и тому подобное. Да и по трансформатору информации практически никакой – сечение проводов, количество витков и так далее. Следовательно, расчеты придется делать самому.


Но даже трансформатор можно изготовить своими руками, при умении и желании. Например, взять его от блока питания старого ПК. Главное, чтобы соответствовал основным требованиям, указанным выше. В зависимости от модификации компьютера могут быть некоторые отличия. Можно использовать и часть схемы . Имеются и другие варианты.


Но все это – время + опыт самостоятельного конструирования + теоретические знания. Вот и получается, что приобрести блок питания и/или переделать его, приспособив к работе с шуруповертом, гораздо проще и быстрее. Все другие варианты для человека, который с электрикой/электроникой на «Вы», вряд ли приемлемы, даже если есть схема и ее описание. Ведь придется еще и «травить» плату для размещения всех радиодеталей – многие ли знают, как это делать?

В продаже имеются готовые БП (импульсные) на 18 В, именно для шуруповертов. Их цена невысокая – от 846 рублей. Кто не уверен, что сможет своими руками собрать блок питания, стоит учесть.

Остается добавить, что решение о переходе на питание от БП имеет существенный недостаток – «привязка» к розетке. Но насколько это актуально для бытового шуруповерта? А преимуществ хватает – стабильность крутящего момента, возможность вдохнуть «вторую жизнь» в инструмент, к которому невозможно найти аккумуляторы, и никакого ухода за источником питания. А из чего его можно сделать, какие есть варианты, рассказано довольно подробно.

Решение за вами, уважаемый читатель!

Современные электроинструменты популярны тем, что во время работы позволяют не привязываться к электросети, что расширяет возможности их эксплуатации, даже в полевых условиях. Наличие аккумуляторной батереи значительно ограничивает длительность активной работы, поэтому шуруповерты и дрели требуют постоянного доступа к источнику питания. К сожалению, у современных инструментов (чаще китайского производства) питающая батарея обладает небольшой надежностью и часто быстро выходит из строя, поэтому народным умельцам приходится обходиться подручными материалами, чтобы не только собрать импульсный блок питания, но и сэкономить на этом средства.
Примером подобного хэнд-мэйда является импульсный блок питания (ИБП) для аккумуляторного шуруповерта на 18 В, собранный из элементов неработающей энергосберегающей лампы, которая может принести пользу даже после своей «смерти».

Строение и принцип работы энергосберегающей лампы

Строение энергосберегающей лампы

Чтобы понять, чем может быть полезна энергосберегающая лампа, рассмотрим ее строение.
Конструкция лампы состоит из следующих составных частей:

  1. Герметичной стеклянной трубки (колбы), внутри покрытой люминофорным составом. Колба заполнена инертным газом (аргоном) и парами ртути.
  2. Пластикового корпуса, изготовленного из негорючего материала.
  3. Небольшой электронной платы (электронным балластом) с пускорегулирующим аппаратом (ПРА), который отвечает за запуск и исключает мерцание прибора. ПРА современных приборов оснащен фильтром, защищающим лампу от сетевых помех.
  4. Предохранитель, защищающий компоненты платы от скачков напряжения, которые могут вызвать возгорание прибора.
  5. Корпуса – в нем «упакованы» ПРА, предохранитель и соединительные провода. На корпусе размещают маркировку, которая содержит информацию о напряжении, мощности и цветовой температуре.
  6. Цоколя, обеспечивающего контакт лампы с электропитанием (самые распространенные цоколи – Е14, Е27, GU10, G5.3).

К колбе лампы подсоединены две спирали (электрода), которые под действием тока раскаляются и испускают со своей поверхности электроны. В результате взаимодействия электронов с парами ртути в колбе возникает тлеющий заряд, «рождающий» УФ-излучение. Воздействуя на люминофор, ультрафиолет «заставляет» лампу светиться. Цветовая температура «экономки» определяется химическим составом люминофора.

Виды поломок энергосберегающих ламп

Энергосберегающая лампа может выйти из строя в двух случаях:

  • разбилась колба лампы;
  • вышел из строя электронный балласт (ЭБ) (преобразователь напряжения высокой частоты), отвечающий за преобразование переменного тока в постоянный, постепенный нагрев электродов и предотвращающий мерцание прибора во время включения.

При разрушении колбы, лампу можно просто выбросить, а при поломке электронного балласта – отремонтировать или использовать для своих целей, например, использовать для изготовления ИБП, добавив в схему разделительный трансформатор и выпрямитель.

Комплектация электронного балласта энергосберегающей лампы
Большинство ЭБ ламп являются высокочастотными преобразователями напряжения, собранными на полупроводниковых триодах (транзисторах).
Более дорогие приборы укомплектованы сложной схемой ЭБ, соответственно, более дешевые – упрощенной.
Электронный балласт «укомплектован» следующими электрическими элементами:

  • биполярным транзистором, работающем на напряжениях до 700 В и токах до 4А;
  • защитными диодами (в основном, это элементы типа D4126L или аналогичные им);
  • импульсным трансформатором;
  • дросселем;
  • двунаправленным динистором, аналогичным сдвоенному КН102;
  • конденсатором 10/50В
  • некоторые схемы ЭБ комплектуют полевыми транзисторами.

На рисунке ниже приведен состав электронного балласта лампы с функциональным описанием каждого элемента.

Функциональное описание

Некоторые схемы ЭБ энергосберегающих ламп позволяют практически полностью заменить схему самодельного импульсного источника, дополнив ее несколькими элементами и внеся небольшие изменения.

Отдельные схемы преобразователей работают на электролитических конденсаторах или содержат специализированную микросхему. Такие схемы ЭБ лучше не использовать, ведь именно они часто являются источниками отказов многих электронных устройств.

Что общего между электрическими схемами «экономок» и ИБП?

Ниже приведена одна из распространенных электрических схем лампы, дополненная перемычкой А-А’, заменяющей отсутствующие детали и лампу, импульсным трансформатором и выпрямителем. Элементы схемы, выделенные красным, можно удалить.

Электрическая схема «экономки» на 25 Вт

В результате некоторых изменений и необходимых дополнений, как видно из схемы приведенной ниже, можно собрать импульсный блок питания, где красным цветом выделены добавленные элементы.

Конечная электрическая схема ИБП

Каких параметров мощности БП можно добиться от энергосберегающей лампы?

«Вторую» жизнь «экономки» часто используют современные радиолюбители. Ведь для их хэнд-мэйдов часто требуется силовой трансформатор, с наличием которого возникают определенные трудности, начиная его покупкой и заканчивая расходом большого количества провода для обмотки и габаритными размерами конечного изделия. Поэтому народные умельцы приловчились заменять трансформатор на импульсный блок питания. Тем более, если для этих целей использовать электронный балласт неисправного осветительного прибора, это существенно сэкономит средства, особенно для трансформатора мощностью более 100 Вт.

Маломощный импульсный блок питания можно соорудить путем вторичной обмотки каркаса уже имеющейся катушки индуктивности. Чтобы получить блок питания более высокой мощности, потребуется дополнительный трансформатор. Импульсный блок питания на 100 Вт м более можно изготовить на базе ЭБ ламп мощностью 20-30 Вт, схему которых придется немного изменить, дополнив ее выпрямляющим диодным мостом VD1-VD4 и изменив в сторону увеличения сечение обмотки дросселя L0.

Самодельный трансформаторный БП

Если не удастся повысить коэффициент усиления транзисторов, придется увеличить ток их базы, изменив номиналы резисторов R5-R6 на меньшие. Кроме этого, придется увеличить параметры мощности резисторов базовой и эмиттерной цепи.
При малой частоте генерации, придется заменить конденсаторы C4, C6 на элементы с большей емкостью.

Самодельный блок питания

Блок питания

Маломощный импульсный блок питания с параметрами мощности 3,7-20 Вт не требует использования импульсного трансформатора. Для этого будет достаточно увеличить количество витков магнитопровода на уже имеющемся дросселе. Новую обмотку можно намотать поверх старой. Для этого рекомендуют использовать провод МГТФ с фторопластовой изоляцией, которая заполнит просвет магнитопровода, что не потребует большого количества материала и обеспечит необходимую мощность устройства.

Чтобы повысить мощность ИБП, придется использовать трансформатор, который также можно соорудить на основе уже имеющегося дросселя ЭБ. Только для этого рекомендуют использовать лакированный обмоточный медный провод, предварительно намотав на родную дроссельную обмотку защитную пленку во избежание пробоя. Оптимальное количество витков вторичной обмотки обычно подбирают опытным путем.

Как подключить новый ИБП к шуруповерту?

Чтобы подключить импульсный блок питания, собранный на основе электронного балласта, необходимо разобрать шуруповерт, сняв все крепежные элементы. Используя пайку или термоусадочные трубки, провода двигателя устройства соединяем с выходом ИБП. Соединение проводов, путем скручивания – не желательный контакт, поэтому забываем о нем, как о ненадежном. Предварительно в корпусе инструмента просверливаем отверстие, через которое пустим провода. Для предотвращения случайного вырывания, провод необходимо обжать алюминиевой клипсой у самого отверстия внутренней поверхности корпуса электроинструмента. Размеры клипсы, превосходящие диаметр отверстия, не дадут проводу механически повредиться и выпасть из корпуса.

Шуруповерт

Как видно, даже после отработки энергосберегающая лампа может прослужить длительное время, принеся пользу. На ее базе можно собрать маломощный питающий импульсный блок до 20 Вт, который прекрасно заменит аккумуляторную батарею электроинструмента на 18 В или любое другое зарядное устройство. Для этого можно использовать элементы электронного балласта энергосберегающей лампы и технологию, описанную выше, чем и пользуются народные умельцы, чаще всего, чтобы отремонтировать вышедшую строя батарею или сэкономить на покупке нового питающего источника.


Самодельные солнечные коллекторы для бассейнов, процесс установки

Просмотров