Трехфазная сеть: расчет мощности, схема подключения. Трехфазный двигатель в однофазной сети

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток
Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата
Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Если электродвигатель в одном числе, и работает полную смену, то есть следующие недостатки:
  • Нельзя отрегулировать тепловой ток сработки автоматического выключателя. Чтобы защитить электромотор, ток защитного отключения автомата устанавливают на 20% больше рабочего тока по номиналу мотора. Ток электродвигателя нужно через определенное время замерять клещами, настраивать ток тепловой защиты. Но у простого автоматического выключателя нет возможности настроить ток.
  • Нельзя дистанционно выключить и включить электродвигатель.

Трехфазные асинхронные двигатели совершенно заслужено являются самыми массовыми в мире, благодаря тому, что они очень надежны, требуют минимального технического обслуживания, просты в изготовлении и не требуют при подключении каких-либо сложных и дорогостоящих устройств, если не требуется регулировка скорости вращения. Большинство станков в мире приводятся в действие именно трёхфазными асинхронными двигателями, они также приводят в действие насосы, электроприводы различных полезных и нужных механизмов.

Но как быть тем, кто в личном домовладении не имеет трехфазного электроснабжения, а в большинство случаев это именно так. Как быть, если хочется в домашней мастерской поставить стационарную циркулярную пилу, электрофуганок или токарный станок? Хочется порадовать читателей нашего портала, что выход из этого затруднительного положения есть, причем достаточно просто реализуемый. В этой статье мы намерены рассказать, как подключить трехфазный двигатель в сеть 220 В.

Принципы работы трехфазных асинхронных двигателей

Рассмотрим кратко принцип работы асинхронного двигателя в своих «родных» трехфазных сетях 380 В. Это очень поможет впоследствии адаптировать двигатель для работы в других, «не родных» условиях – однофазных сетях 220 В.

Устройство асинхронного двигателя

Большинство производимых в мире трехфазных двигателей – это асинхронные двигатели с короткозамкнутым ротором (АДКЗ), которые не имеют никакой электрической контактной связи статора и ротора. В этом их основное преимущество, так как щетки и коллекторы, – самое слабое место любого электродвигателя, они подвержены интенсивному износу, требуют технического обслуживания и периодической замены.

Рассмотрим устройство АДКЗ. Двигатель в разрезе показан на рисунке.


В литом корпусе (7) собран весь механизм электродвигателя, включающий две главные части – неподвижный статор и подвижный ротор. В статоре имеется сердечник (3), который набран из листов специальной электротехнической стали (сплава железа и кремния), которая обладает хорошими магнитными свойствами. Сердечник набран из листов по причине того, что в условиях переменного магнитного поля в проводниках могут возникнуть вихревые токи Фуко, которые в статоре нам абсолютно не нужны. Дополнительно каждый лист сердечника еще покрыт с обеих сторон специальным лаком, чтобы вообще свести на нет протекание токов. Нам от сердечника нужны только магнитные его свойства, а не свойства проводника электрического тока.

В пазах сердечника уложена обмотка (2), выполненная из медного эмалированного провода. Если быть точным, то обмоток в трехфазном асинхронном двигателе как минимум три – по одной на каждую фазу. Причем уложены это обмотки в пазы сердечника с определенным порядком – каждая расположена так, что находится под угловым расстоянием в 120° к другой. Концы обмоток выведены в клеммную коробку (на рисунке она расположена в нижней части двигателя).

Ротор помещен внутрь сердечника статора и свободно вращается на валу (1). Зазор между статором и ротором для повышения КПД стараются сделать минимальным – от полумиллиметра до 3 мм. Сердечник ротора (5) также набран из электротехнической стали и в нем тоже имеются пазы, но они предназначены не для обмотки из провода, а для короткозамкнутых проводников, которые расположены в пространстве так, что напоминают беличье колесо (4), за что и получили свое название.


Беличье колесо состоит из продольных проводников, которые связаны и механически, и электрически с торцевыми кольцами Обычно беличье колесо изготавливают путем заливки в пазы сердечника расплавленного алюминия, а заодно еще формуют монолитом и кольца, и крыльчатки вентиляторов (6). В АДКЗ большой мощности в качестве проводников клетки применяют медные стержни, сваренные с торцевыми медными кольцами.

Что такое трехфазный ток

Для того чтобы понять какие силы заставляют вращаться ротор АДКЗ, надо рассмотреть что такое трехфазная система электроснабжения, тогда все встанет на свои места. Мы все привыкли к обычной однофазной системе, когда в розетке есть только два или три контакта, один из которых (L), второй рабочий ноль (N), а третий защитный ноль (PE). Среднеквадратичное фазное напряжение в однофазной системе (напряжение между фазой и нулем) равно 220 В. Напряжение (а при подключении нагрузки и ток) в однофазных сетях изменяются по синусоидальному закону.


Из приведенного графика амплитудно-временной характеристики видно, что амплитудное значение напряжения не 220 В, а 310 В. Чтобы у читателей не было никаких «непоняток» и сомнений, авторы считают своим долгом сообщить, что 220 В – это не амплитудное значение, а среднеквадратичное или действующее. Он равно U=U max /√2=310/1,414≈220 В. Для чего это делается? Только для удобства расчетов. За эталон принимают постоянное напряжение, по его способности произвести какую-то работу. Можно сказать, что синусоидальное напряжение с амплитудным значением в 310 В за определенный промежуток времени произведет такую же работу, которое бы сделало постоянное напряжение 220 В за тот же промежуток времени.

Надо сразу сказать, что практически вся генерируемая электрическая энергия в мире трехфазная. Просто с однофазной энергией проще управляться в быту, большинству потребителей электроэнергии достаточно и одной фазы для работы, да и однофазные проводки гораздо дешевле. Поэтому из трехфазной системы «выдергивается» один фазный и нулевой проводник и направляются к потребителям – квартирам или домам. Это хорошо видно в подъездных щитах, где видно, как с одной фазы провод идет в одну квартиру, с другой во вторую, с третьей в третью. Это так же хорошо видно на столбах, от которых линии идут к частным домовладениям.

Трехфазное напряжение, в отличие от однофазного, имеет не один фазный провод, а три: фаза A, фаза B и фаза C. Фазы еще могут обозначать L1, L2, L3. Кроме фазных проводов, естественно, присутствует еще общий для всех фаз рабочий ноль (N) и защитный ноль (PE). Рассмотрим амплитудно-временную характеристику трехфазного напряжения.


Из графиков видно, что трехфазное напряжение – это совокупность трех однофазных, с амплитудой 310 В и среднеквадратичным значением фазного (между фазой и рабочим нулем) напряжения в 220 В, причем фазы смещены относительно друг друга с угловым расстоянием 2*π/3 или 120°. Разность потенциалов между двумя фазами называют линейным напряжением и оно равно 380 В, так как векторная сумма двух напряжений будет U л =2* U ф * sin(60°)=2*220* √3/2=220* √3=220*1,73=380,6 В , где U л – линейное напряжение между двумя фазами, а U ф – фазное напряжение между фазой и нулем.

Трехфазный ток легко генерировать передавать к месту назначения и в дальнейшем преобразовывать в любой нужный вид энергии. В том числе и в механическую энергию вращения АДКЗ.

Как работает трехфазный асинхронный двигатель

Если подать переменное трехфазное напряжение на обмотки статора, то через них начнут протекать токи. Они, в свою очередь, вызовут магнитные потоки, также изменяющиеся по синусоидальному закону и также сдвинутые по фазе на 2*π/3=120°. Учитывая, что обмотки статора расположены в пространстве на таком же угловом расстоянии – 120°, внутри сердечника статора образуется вращающееся магнитное поле.

трехфазный электродвигатель


Это постоянно изменяющееся поле пересекает «беличье колесо» ротора и вызывает в нем ЭДС (электродвижущую силу), которая также будет пропорциональна скорости изменения магнитного потока, что на математическом языке означает производную от магнитного потока по времени. Так как магнитный поток изменяется по синусоидальному закону, значит, ЭДС будет изменяться по закону косинуса, ведь (sinx )’= cosx . Из школьного курса математики известно, что косинус «опережает» синус на π/2=90°, то есть, когда косинус достигает максимума, синус его достигнет через π/2 — через четверть периода.

Под воздействием ЭДС в роторе, а, точнее, в беличьем колесе возникнут большие токи, учитывая, что проводники замкнуты накоротко и имеют низкое электрическое сопротивление. Эти токи образуют свое магнитное поле, которое распространяется по сердечнику ротора и начинает взаимодействовать с полем статора. Разноименные полюса, как известно, притягиваются, а одноименные отталкиваются друг от друга. Возникающие силы создают момент заставляющий ротор вращаться.

Магнитное поле статора вращается с определенной частотой, которая зависит от питающей сети и количества пар полюсов обмоток. Рассчитывается частота по следующей формуле:

n 1 = f 1 *60/ p, где

  • f 1 – частота переменного тока.
  • p – число пар полюсов обмоток статора.

С частотой переменного тока все понятно – она в наших сетях электроснабжения составляет 50 Гц. Число пар полюсов отражает, сколько пар полюсов имеется на обмотке или обмотках, принадлежащих одной фазе. Если к каждой фазе подключается одна обмотка, отстоящая на 120° от других, то число пар полюсов будет равно единице. Если одной к одной фазе подключаются две обмотки, тогда число пар полюсов будет равно двум и так далее. Соответственно и меняется угловое расстояние между обмотками. Например, при числе пар полюсов равным двум, в статоре размещается обмотка фазы A, которая занимает сектор не 120°, а 60°. Затем за ней следует обмотка фазы B, занимающая такой же сектор, а затем и фазы C. Далее чередование повторяется. При увеличении пар полюсов соответственно уменьшаются сектора обмоток. Такие меры позволяют уменьшить частоту вращения магнитного поля статора и соответственно ротора.

Приведем пример. Допустим, трехфазный двигатель имеет одну пару полюсов и подключен к трехфазной сети частотой 50 Гц. Тогда магнитное поле статора будет вращаться с частотой n 1 =50*60/1=3000 об/мин. Если увеличить количество пар полюсов – во столько же раз уменьшится частота вращения. Чтобы поднять обороты двигателя, надо увеличить частоту , питающего обмотки. Чтобы изменить направление вращения ротора, надо поменять местами две фазы на обмотках

Следует отметить, что частота вращения ротора всегда отстает от частоты вращения магнитного поля статора, поэтому двигатель и называется асинхронным. Почему это происходит? Представим, что ротор вращается с той же скоростью, что и магнитное поле статора. Тогда беличье колесо не будет «пронизывать» переменное магнитное поле, а оно будет для ротора постоянным. Соответственно не будет наводиться ЭДС и перестанут протекать токи, не будет взаимодействия магнитных потоков и исчезнет момент, приводящий ротор в движение. Именно поэтому ротор находится «в постоянном стремлении» догнать статор, но никогда не догонит, так как исчезнет энергия, заставляющая вращаться вал двигателя.

Разницу частот вращения магнитного поля статора и вала ротора называют частотой скольжения, и она рассчитывается по формуле:

n= n 1 -n 2 , где

  • n1 – частота вращения магнитного поля статора.
  • n2 – частота вращения ротора.

Скольжением называется отношение частоты скольжения к частоте вращения магнитного поля статора, оно рассчитывается по формуле: S=∆ n/ n 1 =(n 1 — n 2)/ n 1 .

Способы подключения обмоток асинхронных двигателей

Большинство АДКЗ имеет три обмотки, каждая из которых соответствует своей фазе и имеет начало и конец. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – ее конец, то есть обмотка U имеет два вывода U1 и U2, обмотка V–V1 и V2, а обмотка W – W1 и W2.

Однако еще до сих пор в эксплуатации находятся асинхронные двигатели, сделанные во времена СССР и имеющие старую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, о концы C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая C2 и C5, а третья C3 и C6. Соответствие старых и новых систем обозначений представлено на рисунке.


Рассмотрим, как могут соединяться обмотки в АДКЗ.

Соединение звездой

При таком соединении все концы обмоток объединяют в одной точке, а к их началам подключают фазы. На принципиальной схеме такой способ подключения действительно напоминает звезду, за что и получил название.


При соединении звездой к каждой обмотке в отдельности приложено фазной напряжение в 220 В, а к двум обмоткам, соединенных последовательно линейное напряжение 380 В. Главное преимущество такого способа подключения – это небольшие токи запуска, так как линейное напряжение приложено к двум обмоткам, а не к одной. Это позволяет двигателю «мягко» стартовать, но мощность его будет ограничена, так как протекающие токи в обмотках будут меньше, чем при другом способе подключения.

Соединение треугольником

При таком соединении обмотки объединяют в треугольник, когда начало одной обмотки соединяется с концом следующей – и так по кругу. Если линейное напряжение в трехфазной сети 380 В, то через обмотки будут протекать токи гораздо больших величин, чем при соединении звездой. Поэтому мощность электродвигателя будет выше.


При соединении треугольником в момент запуска АДКЗ потребляет большие пусковые токи, которые могут в 7-8 раз превышать номинальные и способны вызвать перегрузку сети, поэтому на практике инженеры нашли компромисс – запуск двигателя и его раскручивание до номинальных оборотов производится по схеме звезда, а затем происходит автоматическое переключение на треугольник.

Как определить, по какой схеме подключены обмотки двигателя?

Прежде чем подключать трехфазный двигатель к однофазной сети 220 В, необходимо выяснить по какой схеме подключены обмотки и при каком рабочем напряжении может работать АДКЗ. Для этого необходимо изучить табличку с техническими характеристиками – «шильдик», который должен быть на каждом двигателе.


На такой табличке — «шильдике», можно узнать много полезной информации

На табличке имеется вся необходимая информация, которая поможет подключить двигатель к однофазной сети. На представленном шильдике видно, что двигатель имеет мощность 0,25 кВт и количество оборотов 1370 об/мин, что говорит о наличии двух пар полюсов обмоток. Значок ∆/Y означает, что обмотки можно соединить как треугольником, так и звездой, причем следующий показатель 220/380 В свидетельствует о том, что при соединении треугольником напряжение питающей сети должно быть 220 В, а при соединении звездой – 380 В. Если такой двигатель подключить в сеть 380 В треугольником, то обмотки его сгорят.


На следующем шильдике можно увидеть, что такой двигатель можно подключить только звездой и только в сеть 380 В. Скорее всего в клеммной коробке у такого АДКЗ будет только три вывода. Опытные электрики смогут подключить и такой двигатель к сети 220 В, но для этого надо будет вскрывать заднюю крышку, чтобы добраться до выводов обмоток, затем найти начало и конец каждой обмотки и произвести необходимую коммутацию. Задача сильно усложняется, поэтому авторы не рекомендуют подключать такие двигатели к сети 220 В, тем более что большинство современных АДКЗ могут подключаться по-разному.

На каждом двигателе есть клеммная коробка, расположенная чаще всего сверху. В этой коробке есть входы для питающих кабелей, а сверху она закрыта крышкой, которую необходимо снять при помощи отвертки.


Как говорят электрики и паталогоанатомы: «Вскрытие покажет»

Под крышкой можно увидеть шесть клемм, каждая из которых соответствует или началу, или концу обмотки. Помимо этого клеммы соединяются перемычками, и по их расположению можно определить, по какой схеме подключены обмотки.


Вскрытие клеммной коробки показало, что у «пациента» очевидная «звездная болезнь»

На фото «вскрытой» коробки видно, что провода, ведущие к обмоткам подписаны и перемычками соединены в одну точку концы всех обмоток – V2, U2, W2. Это свидетельствует о том, что имеет место соединение звездой. С первого взгляда может показаться, что концы обмоток расположены в логичном порядке V2, U2, W2, а начала «перепутаны» - W1, V1, U1. Однако, это сделано с определенной целью. Для этого рассмотрим клеммную коробку АДКЗ с подключенными обмотками по схеме треугольник.


На рисунке видно, что положение перемычек меняется – соединяются начала и концы обмоток, причем клеммы расположены так, что те же перемычки используются для перекоммутации. Тогда становится понятно почему «перепутаны» клеммы – так легче перебрасывать перемычки. На фотографии видно, что клеммы W2 и U1 соединены отрезком провода, но в базовой комплектации новых двигателей всегда присутствуют именно три перемычки.

Если после «вскрытия» клеммной коробки обнаруживается такая картина, как на фотографии, то это означает, что двигатель предназначен для звезды и трехфазной сети 380 В.


Такому двигателю лучше возвращаться в свою «родную стихию» — в цепи трехфазного переменного тока

Видео: Отличный фильм про трехфазные синхронные двигатели, который еще не успели раскрасить

Подключить трехфазный двигатель в однофазную сеть 220 В можно, но при этом надо быть готовым пожертвовать значительным снижением его мощности – в лучшем случае она составит 70% от паспортной, но для большинства целей это вполне приемлемо.

Основной проблемой подключения является создание вращающегося магнитного поля, которое наводит ЭДС в короткозамкнутом роторе. В трехфазных сетях реализовать это просто. При генерации трехфазной электроэнергии в обмотках статора наводится ЭДС из-за того, что внутри сердечника вращается намагниченный ротор, который приводится в движение энергией падающей воды на ГЭС или паровой турбиной на ГЭС и АЭС. Он создает вращающееся магнитное поле. В двигателях происходит обратное преобразование – изменяющееся магнитное поле приводит во вращение ротор.

В однофазных сетях получить вращающееся магнитное поле сложнее - надо прибегнуть к некоторым «хитростям». Для этого надо сдвинуть фазы в обмотках по отношению друг к другу. В идеальном случае нужно сделать так, что фазы будут сдвинуты по отношению друг к другу на 120°, но на практике это трудно реализовать, так как такие устройства имеют сложные схемы, стоят достаточно дорого и их изготовление и настройка требуют определенной квалификации. Поэтому в большинстве случаев применяют простые схемы, при этом несколько жертвуя мощностью.

Сдвиг фаз при помощи конденсаторов

Электрический конденсатор известен своим уникальным свойством не пропускать постоянный ток, но пропускать переменный. Зависимость токов, протекающих через конденсатор, от приложенного напряжения показана на графике.


Ток в конденсаторе всегда будет «лидировать» на четверть периода

Как только к конденсатору прикладывают возрастающее по синусоиде напряжение, он сразу «накидывается» на него и начинает заряжаться, так как изначально был разряжен. Ток в этот момент будет максимальным, но по мере заряда он будет уменьшаться и достигнет минимума в тот момент, когда напряжение достигнет своего пика.

Как только напряжение будет уменьшаться, конденсатор среагирует на это и будет начинать разряжаться, но ток при этом будет идти в обратном направлении, по мере разряда он будет увеличиваться (со знаком минус) до тех пор, пока уменьшается напряжение. К моменту, когда напряжение равно нулю ток достигает своего максимума.

Когда напряжение начинает расти со знаком минус, то идет перезаряд конденсатора и ток постепенно приближается от своего отрицательного максимума к нулю. По мере уменьшения отрицательного напряжения и стремлении его к нулю идет разряд конденсатора с увеличением тока через него. Далее, цикл повторяется заново.

Из графика видно, что за один период переменного синусоидального напряжения, конденсатор два раза заряжается и два раза разряжается. Ток, протекающий через конденсатор, опережает напряжение на четверть периода, то есть — 2* π/4= π/2=90° . Вот таким простым путем можно получить фазовый сдвиг в обмотках асинхронного двигателя. Сдвиг фаз в 90° не является идеальным в 120°, но вполне достаточен для того, чтобы на роторе появился необходимый вращательный момент.

Сдвиг фаз также можно получить, применив катушку индуктивности. В этом случае все произойдет наоборот – напряжение будет опережать ток на 90°. Но на практике применяют больше емкостной сдвиг фаз из-за более простой реализации и меньших потерь.

Схемы подключения трехфазных двигателей в однофазную сеть

Существует очень много вариантов подключения АДКЗ, но мы рассмотрим только наиболее часто используемые и наиболее просто реализуемые. Как было рассмотрено ранее, для сдвига фазы достаточно подключить параллельно какой-либо из обмоток конденсатор. Обозначение C р говорит о том, что это рабочий конденсатор.


Следует отметить, что соединение обмоток в треугольник предпочтительней, так как с такого АДКЗ можно «снять» полезной мощности больше, чем со звезды. Но существуют двигатели, предназначенные для работы в сетях с напряжением 127/220 В. О чем обязательно должна быть информация на шильдике.


Если читателям встретится такой двигатель, то - это можно считать удачей, так как его можно включать в сеть 220 В по схеме звезда, а это обеспечит и плавный пуск, и до 90% от паспортной номинальной мощности. Промышленностью выпускаются АДКЗ специально предназначенные для работы в сетях 220 В, которые могут называть конденсаторными двигателями.


Как двигатель не называй — он все равно асинхронный с короткозамкнутым ротором

Следует обратить внимание, что на шильдике указано рабочее напряжение 220 В и параметры рабочего конденсатора 90 мкФ (микрофарад, 1 мкФ=10 -6 Ф) и напряжение 250 В. Можно с уверенностью сказать, что этот двигатель фактически является трехфазным, но адаптированный для однофазного напряжения.

Для облегчения пуска мощных АДКЗ в сетях 220 В кроме рабочего применяют еще и пусковой конденсатор, который включается на непродолжительное время. После старта и набора номинальных оборотов пусковой конденсатор отключают, и вращение ротора поддерживает только рабочий конденсатор.


Пусковой конденсатор «дает пинка» при старте двигателя

Пусковой конденсатор – C п, подключают параллельно рабочему C р. Из электротехники известно, что при параллельном соединении емкости конденсаторов складываются. Для его «активации» применяют кнопочный выключатель SB, удерживаемый несколько секунд. Емкость пускового конденсатора обычно минимум в два с половиной раза выше, чем рабочего, причем сохранять заряд он может достаточно долго. При случайном прикосновении к его выводам можно получить довольно сильно ощутимый разряд через тело. Для того чтобы разрядить C п применяют резистор, подключенный параллельно. Тогда после отключения пускового конденсатора от сети, будет происходить его разряд через резистор. Его выбирают с достаточно большим сопротивлением 300 кОм-1 мОм и рассеиваемой мощностью не менее 2 Вт.

Расчет емкости рабочего и пускового конденсатора

Для уверенного запуска и устойчивой работы АДКЗ в сетях 220 В следует наиболее точно подобрать емкости рабочего и пускового конденсаторов. При недостаточной емкости C р на роторе будет создаваться недостаточный момент для подключения какой-либо механической нагрузки, а избыточная емкость может привести к протеканию слишком высоких токов, что в результате может привести к межвитковому замыканию обмоток, которое «лечится» только очень дорогостоящей перемоткой.

Схема Что рассчитывается Формула Что необходимо для расчетов
Емкость рабочего конденсатора для подключения обмоток звездой – Cр, мкФ Cр=2800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(2800/√3)*P/(U^2*n* cosϕ)=1616,6*P/(U^2*n* cosϕ)
Для всех:
I – ток в амперах, A;
U – напряжение в сети, В;
P – мощность электродвигателя;
η – КПД двигателя выраженное в величинах от 0 до 1 (если на шильдике двигателя оно указано в процентах, то этот показатель надо разделить на 100);
cosϕ – коэффициент мощности (косинус угла между вектором напряжения и тока), он всегда указывается в паспорте и на шильдике.
Емкость пускового конденсатора для подключения обмоток звездой – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр
Емкость рабочего конденсатора для подключения обмоток треугольником – Cр, мкФ Cр=4800*I/U;
I=P/(√3*U*η*cosϕ);
Cр=(4800/√3)*P/(U^2*n* cosϕ)=2771,3*P/(U^2*n* cosϕ)
Емкость пускового конденсатора для подключения обмоток треугольником – Cп, мкФ Cп=(2-3)*Cр≈2,5*Cр

Приведенных формул в таблице вполне достаточно для того, чтобы рассчитать необходимую емкость конденсаторов. В паспортах и на шильдиках может указываться КПД или рабочий ток. В зависимости от этого можно вычислить необходимые параметры. В любом случае тех данных будет достаточно. Для удобства наших читателей, можно воспользоваться калькулятором, который быстро рассчитает необходимую рабочую и пусковую емкость.

Добрый день, уважаемые читатели сайта «Заметки электрика».

Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).

Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.

О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.

Итак, приступим.


ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.

Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.


ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик .


ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.


ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:

ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Подключение счетчика через трансформаторы тока. Выводы

В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.

Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.

Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.

P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.

Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.

Следите за обновлениями или подпишитесь на новости сайта.

УЗМ-3-63 является многофункциональным устройством, которое обеспечивает контроль 3-х фазного напряжения в сети. Также оно имеет встроенную варисторную защиту от импульсных скачков напряжения и имеет функцию контроля частоты сети электропитания от автономного генератора.

Схема подключения УЗМ-3-63 довольно проста и ее принципиальный вариант можно найти на корпусе устройства или в его паспорте. Здесь привожу наглядную и более понятную схему подключения 3-х фазного реле напряжения УЗМ-3-63 с автоматическими выключателями, по которой можно понять суть подключения.

Все контакты устройства имеют маркировку на корпусе. Поэтому не видя самой схемы можно понять что и куда подключается. Часто тут смущает то, что выходные фазные контакты имеют маркировку U, V и W, что вводит многих в заблуждение. Как же подключить данное устройство?

На верхние контакты подключается вход :

  • N - приходящий нулевой рабочий проводник;
  • L1 - приходящий проводник фазы A;
  • L2 - приходящий проводник фазы B;
  • L3 - приходящий проводник фазы C.

На нижние контакты подключается выход :

  • N - отходящий нулевой рабочий проводник;
  • U - отходящий проводник фазы A;
  • V - отходящий проводник фазы B;
  • W - отходящий проводник фазы C.

Вот фото самого устройства УЗМ-3-63. Контакты его поляризованного реле рассчитаны на длительное протекание через них максимального тока 63А. Если ваша нагрузка будет потреблять больший ток, то это реле уже вам не подойдет или придется его включать через мощный контактор.

Варианты комплектации щитков могут быть разнообразны, но суть подключения устройства всегда остается одинаковой.

При использовании УЗМ-3-63 помните, что во время отключения нагрузки нулевой рабочий проводник не коммутируется, т.е. не разрывается. Здесь разрываются только фазные проводники.

Регулировка уставок устройства производится в ручную с помощью трех специальных переключателей. Ими выставляются пределы высокого и низкого напряжений и время задержки повторного включения.

Световая индикация реле интуитивно понятная. Рядом со всеми индикаторами на корпусе находятся их обозначение.

Кто-то вместо 3-хфазного реле УЗМ-3-63 использует три однофазных УЗМ-51М . То есть на каждую фазу ставят по одному однофазному реле. В принципе этот вариант имеет право на жизнь, но для него требуется больше места в щитке и стоит он почти в два дороже.

А вы используете трехфазное реле напряжения УЗМ-3-63?

Улыбнемся:

Как известно, сопротивление человеческого тела около 100 кОм. Каждые 100 г водки, принятые вовнутрь, снижают сопротивление тела на 1 кОм. Сколько нужно выпить водки, чтобы достичь состояния сверхпроводимости?

Среди различных способов запуска трехфазных электродвигателей в однофазную сеть наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность, развиваемая двигателем в этом случае, составляет 50...60% от его мощности в трехфазном включении.

Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, модель с двойной клеткой короткозамкнутого ротора серии МА.

В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.

Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.

Расчет параметров и элементов электродвигателя

Если, например, в паспорте электродвигателя указано напряжение его питания 220/380 В, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1.

После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку "Разгон".

После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.

Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в "треугольник" определяется по формуле:

  • U -напряжение в сети, В.

А в случае соединения обмоток двигателя в "звезду" определяется по формуле:

  • Ср - емкость рабочего конденсатора, в мкФ;
  • I - потребляемый электродвигателем ток, в А;
  • U -напряжение в сети, В.

Потребляемый электродвигателем ток в вышеприведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

  • Р - мощность двигателя, в Вт, указанная в его паспорте;
  • h - КПД;
  • cos j - коэффициент мощности;
  • U -напряжение в сети, В.

Емкость пускового конденсатора Сп выбирают в 2...2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.

Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В.

Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)

Общая емкость соединенных конденсаторов составит:

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.

Мощность трехфазного
двигателя, кВт:

  • 0,4;
  • 0,6;
  • 0,8;
  • 1,1;
  • 1,5;
  • 2,2.

Минимальная емкость рабочего
конденсатора Ср, мкФ:

  • 100;
  • 150;
  • 230.

Минимальная емкость пускового
конденсатора Ср, мкФ:

  • 120;
  • 160;
  • 200;
  • 250;
  • 300.

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток, на 20...30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, емкость конденсатора С р следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора С п можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об./мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой - 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В

Для запуска электродвигателей различных серий мощностью около 0,5 кВт от однофазной сети без реверсирования можно собрать переносной универсальный пусковой блок (рис. 3).

При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В.

Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1.

После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1.

Остановка двигателя осуществляется нажатием на кнопку SB2.

Детали

В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об./мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 - спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 - проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.

Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4):

  • 1- корпус;
  • 2 - ручка для переноски;
  • 3 - сигнальная лампа;
  • 4 - тумблер отключения пускового конденсатора;
  • 5 -кнопки "Пуск" и "Стоп";
  • 6 - доработанная электровилка;
  • 7- панель с гнездами разъема.

На верхней панели корпуса расположены кнопки "Пуск" и "Стоп" - сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для .

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5).

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 - пусковой конденсатор С п. КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети.

Кнопку "Пуск" держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме.

Для остановки электродвигателя следует нажать кнопку "Стоп". В усовершенствованном пусковом устройстве по схеме рис.5 можно использовать реле типа МКУ-48 или ему подобное.

Использование электролитических конденсаторов в схемах запуска электродвигателей

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки.

Схема замены обычног бумажного конденсатора дана на рис. 6.

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости.

Например, если в схеме для однофазной сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене по вышеприведенной схеме можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

В приведенной схеме SA1 - переключатель направления вращения двигателя, SB1 - кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 - во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добиваются равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация.

Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А.

При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

Следует обратить внимание на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.

Включение мощных трехфазных двигателей в однофазную сеть

Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности электрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5...2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например 3...4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой», и в клеммной коробке содержится всего 3 вывода.

Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.

Доработка трехфазного двигателя

Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки.

Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.

Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.

Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об./мин), установленном на самодельном деревообрабатывающем станке, и показала свою эффективность.

Детали

В схеме коммутации обмоток электродвигателя в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.

Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа», после чего продолжают дальнейшую работу.

Для того чтобы улучшить пусковые характеристики двигателей, кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз.

Просмотров